Jamur Aspergillus yang berasosiasi dengan spons sebagai sumber senyawa antimikroba potensial: suatu kajian pustaka
Abstract
Resistensi antimikroba telah menjadi tantangan besar dalam bidang kesehatan di seluruh dunia, yang mengakibatkan penurunan efektivitas obat-obatan yang digunakan untuk mengobati infeksi. Kondisi ini telah mendorong berbagai upaya penemuan antimikroba baru dari berbagai sumber, termasuk bahan alam. Jamur yang berasosiasi dengan spons laut merupakan salah satu sumber potensial senyawa bioaktif dengan berbagai aktivitas biologis, termasuk sebagai antimikroba. Mikroorganisme ini mampu beradaptasi dengan kondisi ekstrem, dan menghasilkan senyawa kimia yang beragam. Diantara jamur tersebut, Aspergillus merupakan salah satu genus jamur yang sering dilaporkan berasosiasi dengan spons laut. Senyawa bioaktif yang dihasilkan oleh jamur ini juga diketahui memiliki aktivitas antimikroba terhadap berbagai patogen. Review artikel ini bertujuan untuk mengkaji keberagaman senyawa kimia yang dihasilkan jamur Aspergillus yang diisolasi dari spons laut dan aktivitas antimikrobanya berdasarkan data dari literatur ilmiah selama 10 tahun terakhir (2014-2024). Sumber data yang digunakan yakni Pubmed, Science Direct dan Google Scholar. Berdasarkan hasil kajian, diperoleh 16 spesies jamur Aspergillus dari spons laut dan lebih dari 100 senyawa yang diantaranya termasuk dalam golongan alkaloid, seskuiterpen, isokumarin, terpenoid serta senyawa poliketida. Sekitar 50 senyawa menunjukkan aktivitas antimikroba terhadap berbagai patogen, termasuk strain yang resisten terhadap antibiotik saat ini.
Downloads
References
Alves DDN, Ferreira AR, Duarte ABS, Melo AKV, De Sousa DP, Castro RD De. 2021. Breakpoints for the Classification of Anti-Candida Compounds in Antifungal Screening. BioMed Research International. Hindawi Limited. DOI: 10.1155/2021/6653311
Balouiri M, Sadiki M, Ibnsouda SK. 2016. Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis. Xi’an Jiaotong University, 71–79. DOI: 10.1016/j.jpha.2015.11.005
Danquah CA, Minkah PAB, Junior IOD, Amankwah KB, Somuah SO. 2022. Antimicrobial Compounds from Microorganisms. Antibiotics. MDPI. DOI: 10.3390/antibiotics11030285
de Oliveira HL da CD, Fleming MECK, Silva PV, de Paula GR, Futuro DO, Velarde GC, Esper LMR, Teixeira LA. 2014. Influence of papain in biofilm formed by methicillin-resistant Staphylococcus epidermidisand methicillin-resistant Staphylococcus haemolyticusisolates. Brazilian Journal of Pharmaceutical Sciences 50(2): 261–267. DOI: 10.1590/S1984-82502014000200005
Ding L, Ren L, Li S, Song J, Han Z, He S, Xu S. 2019. Production of New Antibacterial 4-Hydroxy-α-Pyrones by a Marine Fungus Aspergillus Niger Cultivated in Solid Medium. Marine Drugs 17(6). DOI: 10.3390/md17060344
Elissawy AM, El-Shazly M, Ebada SS, Singab ANB, Proksch P. 2015. Bioactive terpenes from marine-derived fungi. Marine Drugs. MDPI AG, 1966–1992. DOI: 10.3390/md13041966
Grigalunas M, Brakmann S, Waldmann H. 2022. Chemical Evolution of Natural Product Structure. Journal of the American Chemical Society. American Chemical Society, 3314–3329. DOI: 10.1021/jacs.1c11270
Guo C, Wang P, Pang X, Lin X, Liao S, Yang B, Zhou X, Wang J, Liu Y. 2021. Discovery of a Dimeric Zinc Complex and Five Cyclopentenone Derivatives from the Sponge-Associated Fungus Aspergillus ochraceopetaliformis. ACS Omega 6(13): 8942–8949. DOI: 10.1021/acsomega.0c06218
Handayani D, Dwinatrana K, Rustini R. 2022. ANTIBACTERIAL COMPOUND FROM MARINE SPONGE DERIVED FUNGUS Aspergillus sydowii DC08. Rasayan Journal of Chemistry 15(4): 2485–2492. DOI: 10.31788/RJC.2022.1546971
Kaliaperumal K, Salendra L, Liu Y, Ju Z, Sahu SK, Elumalai S, Subramanian K, M. Alotaibi N, Alshammari N, Saeed M, Karunakaran R. 2023. Isolation of anticancer bioactive secondary metabolites from the sponge-derived endophytic fungi Penicillium sp. and in-silico computational docking approach. Frontiers in Microbiology 14. DOI: 10.3389/fmicb.2023.1216928
Karthikeyan A, Joseph A, Nair BG. 2022. Promising bioactive compounds from the marine environment and their potential effects on various diseases. Journal of Genetic Engineering and Biotechnology. Springer Science and Business Media Deutschland GmbH. DOI: 10.1186/s43141-021-00290-4
Kong FD, Huang XL, Ma QY, Xie QY, Wang P, Chen PW, Zhou LM, Yuan JZ, Dai HF, Luo DQ, Zhao YX. 2018. Helvolic Acid Derivatives with Antibacterial Activities against Streptococcus agalactiae from the Marine-Derived Fungus Aspergillus fumigatus HNMF0047. Journal of Natural Products 81(8): 1869–1876. DOI: 10.1021/acs.jnatprod.8b00382
Lee Y, Robbins N, Cowen LE. 2023. Molecular mechanisms governing antifungal drug resistance. npj Antimicrobials and Resistance 1(1). DOI: 10.1038/s44259-023-00007-2
Li W, Ding L, Wang N, Xu J, Zhang W, Zhang B, He S, Wu B, Jin H. 2019. Isolation and characterization of two new metabolites from the sponge-derived fungus Aspergillus sp. LS34 by OSMAC approach. Marine Drugs 17(5). DOI: 10.3390/md17050283
Liu J, Yu R, Jia J, Gu W, Zhang H. 2021a. Assignment of absolute configurations of two promising anti-Helicobacter pylori agents from the marine sponge-derived fungus Aspergillus niger l14. Molecules 26(16). DOI: 10.3390/molecules26165061
Liu S, Dai H, Konuklugil B, Orfali RS, Lin W, Kalscheuer R, Liu Z, Proksch P. 2016. Phenolic bisabolanes from the sponge-derived fungus Aspergillus sp. Phytochemistry Letters 18: 187–191. DOI: 10.1016/j.phytol.2016.10.015
Liu Y, Ding L, He J, Zhang Z, Deng Y, He S, Yan X. 2021b. A new antibacterial chromone from a marine sponge-associated fungus Aspergillus sp. LS57. Fitoterapia 154. DOI: 10.1016/j.fitote.2021.105004
Liu Y, Ding L, Shi Y, Yan X, Wu B, He S. 2022. Molecular Networking-Driven Discovery of Antibacterial Perinadines, New Tetracyclic Alkaloids from the Marine Sponge-Derived Fungus Aspergillus sp. ACS Omega 7(11): 9909–9916. DOI: 10.1021/acsomega.2c00402
Liu Y, Ding L, Zhang Z, Yan X, He S. 2020. New antifungal tetrahydrofuran derivatives from a marine sponge-associated fungus Aspergillus sp. LS78. Fitoterapia 146. DOI: 10.1016/j.fitote.2020.104677
Machado FP, Kumla D, Pereira JA, Sousa E, Dethoup T, Freitas-Silva J, Costa PM, Mistry S, Silva AMS, Kijjoa A. 2021. Prenylated phenylbutyrolactones from cultures of a marine sponge-associated fungus Aspergillus flavipes KUFA1152. Phytochemistry 185. DOI: 10.1016/j.phytochem.2021.112709
Machado FP, Rodrigues IC, Gales L, Pereira JA, Costa PM, Dethoup T, Mistry S, Silva AMS, Vasconcelos V, Kijjoa A. 2022. New Alkylpyridinium Anthraquinone, Isocoumarin, C-Glucosyl Resorcinol Derivative and Prenylated Pyranoxanthones from the Culture of a Marine Sponge-Associated Fungus, Aspergillus stellatus KUFA 2017. Marine Drugs 20(11). DOI: 10.3390/md20110672
Nadeem SF, Gohar UF, Tahir SF, Mukhtar H, Pornpukdeewattana S, Nukthamna P, Moula Ali AM, Bavisetty SCB, Massa S. 2020. Antimicrobial resistance: more than 70 years of war between humans and bacteria. Critical Reviews in Microbiology. Taylor and Francis Ltd., 578–599. DOI: 10.1080/1040841X.2020.1813687
Nieminen SM, Kärki R, Auriola S, Toivola M, Laatsch H, Laatikainen R, Hyvärinen A, Von Wright A. 2002. Isolation and identification of Aspergillus fumigatus mycotoxins on growth medium and some building materials. Applied and Environmental Microbiology 68(10): 4871–4875. DOI: 10.1128/AEM.68.10.4871-4875.2002
Özkaya FC, Ebrahim W, El-Neketi M, Tansel Tanrıkul T, Kalscheuer R, Müller WEG, Guo Z, Zou K, Liu Z, Proksch P. 2018. Induction of new metabolites from sponge-associated fungus Aspergillus carneus by OSMAC approach. Fitoterapia 131: 9–14. DOI: 10.1016/j.fitote.2018.10.008
Ratnaweera PB, Williams DE, De Silva ED, Andersen RJ. 2016. Antibacterial metabolites from the Sri Lankan demosponge-derived fungus, Aspergillus flavipes. Current Science 111(9): 1473–1479. DOI: 10.18520/cs/v111/i9/1473-1479
Rodríguez-Melcón C, Alonso-Calleja C, García-Fernández C, Carballo J, Capita R. 2022. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) for Twelve Antimicrobials (Biocides and Antibiotics) in Eight Strains of Listeria monocytogenes. Biology 11(1). DOI: 10.3390/biology11010046
Saldan NC, Almeida RTR, Avíncola A, Porto C, Galuch MB, Magon TFS, Pilau EJ, Svidzinski TIE, Oliveira CC. 2018. Development of an analytical method for identification of Aspergillus flavus based on chemical markers using HPLC-MS. Food Chemistry 241: 113–121. DOI: 10.1016/j.foodchem.2017.08.065
Song F, Ren B, Chen C, Yu K, Liu X, Zhang Y, Yang N, He H, Liu X, Dai H, Zhang L. 2014. Three new sterigmatocystin analogues from marine-derived fungus Aspergillus versicolor MF359. Applied Microbiology and Biotechnology 98(8): 3753–3758. DOI: 10.1007/s00253-013-5409-5
Sun C, Zhang Z, Ren Z, Yu L, Zhou H, Han Y, Shah M, Che Q, Zhang G, Li D, Zhu T. 2020. Antibacterial Cyclic Tripeptides from Antarctica-Sponge-Derived Fungus Aspergillus insulicola HDN151418. Marine Drugs 18(11). DOI: 10.3390/MD18110532
Sun L, Wang H, Yan M, Sai C, Zhang Z. 2022. Research Advances of Bioactive Sesquiterpenoids Isolated from Marine-Derived Aspergillus sp. Molecules. MDPI. DOI: 10.3390/molecules27217376
Tian YQ, Lin ST, Kumaravel K, Zhou H, Wang SY, Liu YH. 2018. Polyketide-derived metabolites from the sponge-derived fungus Aspergillus sp. F40. Phytochemistry Letters 27: 74–77. DOI: 10.1016/j.phytol.2018.06.009
Trinh PTH, Thanh Van TT, Minh Ly B, Kyu Choi B, Jae Shin H, Seok Lee J, Seung Lee H, Quyet Tien P. 2020. Antimicrobial activity of natural compounds from sponge–derived fungus Aspergillus flocculosus 01NT.1.1.5. Vietnam Journal of Biotechnology 16(4): 729–735. DOI: 10.15625/1811-4989/16/4/8866
Wang CY, Liu XH, Zheng YY, Ning XY, Zhang YH, Fu XM, Li X, Shao CL, Wang CY. 2022a. 2,5-Diketopiperazines From a Sponge-Derived Fungus Aspergillus sclerotiorum. Frontiers in Microbiology 13. DOI: 10.3389/fmicb.2022.808532
Wang D, Qu P, Zhou J, Wang Y, Wang L, Zhu W. 2020. p-Terphenyl alcohols from a marine sponge-derived fungus, Aspergillus candidus OUCMDZ-1051. Marine Life Science and Technology 2(3): 262–267. DOI: 10.1007/s42995-020-00039-x
Wang H, Zhang R, Ma B, Wang W, Yu C, Han J, Zhu L, Zhang X, Dai H, Liu H, Chen B. 2022b. Japonamides A and B, Two New Cyclohexadepsipeptides from the Marine-Sponge-Derived Fungus Aspergillus japonicus and Their Synergistic Antifungal Activities. Journal of Fungi 8(10). DOI: 10.3390/jof8101058
Wang JF, Lin XP, Qin C, Liao SR, Wan JT, Zhang TY, Liu J, Fredimoses M, Chen H, Yang B, Zhou XF, Yang XW, Tu ZC, Liu YH. 2014. Antimicrobial and antiviral sesquiterpenoids from sponge-associated fungus, Aspergillus sydowii ZSDS1-F6. Journal of Antibiotics 67(8): 581–583. DOI: 10.1038/ja.2014.39
Zhang F, Kong FD, Ma QY, Xie QY, Zhou LM, Zhao YX, Guo L. 2020a. Polyketides with quorum sensing inhibitory activity from the marine-derived fungus Aspergillus sp. ZF-79. Journal of Asian Natural Products Research 22(11): 999–1005. DOI: 10.1080/10286020.2019.1670647
Zhang L, Qiu P, Ding L, Li Q, Song J, Han Z, He S. 2020b. A New Antibacterial Chlorinated Amino Acid Derivative from the Sponge-Derived Fungus Aspergillus sp. LS53. Chemistry of Natural Compounds 56(1): 109–111. DOI: 10.1007/s10600-020-02955-x
Zhou Y, Debbab A, Wray V, Lin W, Schulz B, Trepos R, Pile C, Hellio C, Proksch P, Aly AH. 2014. Marine bacterial inhibitors from the sponge-derived fungus Aspergillus sp. Tetrahedron Letters 55(17): 2789–2792. DOI: 10.1016/j.tetlet.2014.02.062