DESAIN SISTEM PEMBUMIAN DENGAN PEMBERIAN ZAT ADITIF GYPSUM DAN GARAM PADA GEDUNG UNIT GAWAT DARURAT RUMAH SAKIT BALI MANDARA

I Made Randi Dwi Pramana Putra¹, Made Agus Putra Harta Narayana², Ida Bagus Alit Swamardika³, I Gusti Ngurah Janardana⁴

¹Program Studi Teknik Elektro, Fakultas, Universitas
²Dosen Program Studi, Fakultas Teknik, Universitas Udayana
Jalan Raya Kampus Unud, Jimbaran, Badung, Bali

maderandi29@gmail.com¹, putrahartanarayana@gmail.com², gusalit@unud.ac.id³,

janardana@unud.ac.id⁴

ABSTRAK

Pada Gedung Unit Gawat Darurat di Rumah Sakit Bali Mandara memiliki tahanan jenis tanah yang cukup tinggi, sehingga menyulitkan untuk pemasangan sistem pembumian dengan nilai tahanan jenis tanah yang lebih kecil sesuai dengan standar. Penelitian ini bertujuan untuk mengetahui efektifitas dari penambahan zat aditif gypsum dan garam untuk menurunkan tahanan jenis tanah. Metode yang di gunakan adalah kuantitatif deskriptif yang dilakukan secara langsung. Hasil dari penelitian ini dengan penambahan zat aditif gypsum dan garam efektif untuk menurunkan tahanan jenis tanah pada Rumah Sakit Bali Mandara. Nilai tahanan jenis tanah tanpa zat aditif gypsum 26,376 Ω .m dengan nilai pengukuran 0,27 ohm. Nilai tahanan jenis tanah dengan zat aditif gypsum 26,376 Ω .m dengan nilai pengukuran 0,21 ohm terjadi penurunan 7,54 Ω .m (22,2%). Nilai tahanan jenis tanah dengan zat aditif garam 30,144 Ω .m dengan nilai pengukuran 0,24 ohm terjadi penurunan 3,768 Ω .m (11,1%). Sistem pembumian yang cocok digunakan pada Gedung Unit Gawat Darurat Rumah Sakit Bali Mandara adalah dengan menggunakan tahanan pembumian dengan tipe satu rod tanpa zat aditif diperlukan biaya Rp 5.680.400 dengan menggunakan 42 batang elektroda. Tahanan pembumian yang di peroleh dengan menggunakan tipe satu rod adalah 0,941886 ohm dengan kedalaman 50 meter.

Kata Kunci : Campuran Zat Aditif, Garam, Gypsum, Perancangan Desain, Sistem Pembumian

ABSTRACT

In the Bali Mandara Hospital Emergency Unit Building the soil resistivity is quite high, making it difficult to install a grounding system with a lower soil resistivity value according to the standard. This study aims to determine the effectiveness of adding gypsum and salt additives in reducing soil resistivity. The method used is quantitative descriptive which is carried out directly. The results of this study with the addition of gypsum and salt additives are effective in reducing soil resistivity at Bali Mandara Regional Hospital. The soil resistivity value without additives is $33,912~\Omega$.m with a measurement value of 0,27 ohm. The soil resistivity value with gypsum additives is $26.376~\Omega$.m with a measurement value of 0,21 ohm, there is a decrease of 7,54 Ω .m (22,2%). The soil resistivity value with salt additives is $30,144~\Omega$.m with a measurement value of 0.24 ohm, there is a decrease of 3,768 Ω .m (11,1%). The right grounding system to be used in Bali Mandara Hospital with sandy soil texture is to use a single rod type grounding resistance without additives, at a cost of Rp 5.680.400 using 42 electrode rods. The grounding resistance obtained by using the single rod type is 0.941886 ohms with a depth of 50 meters.

1. PENDAHULUAN

Pembumian ialah salah satu metode yang digunakan dalam mengamankan peralatan beserta manusianya dari adanya dan tegangan lebih. pembumian ialah suatu sistem yang menghubungkan badan peralatan serta instalasi dengan tanah dengan tujuan menghindari manusia dari sengatan listrik dan melindungi peralatan listrik dari bahaya tegangan. Kualitas sistem pembumian yang baik dibutuhkan nilai tahanan pembumian yang sekecil mungkin. Tahanan pembumian yang baik menurut PUIL (2011) untuk gedung <5 ohm sementara tahanan untuk peralatan <1 ohm. Sehingga sistem pembumian harus memberikan nilai tahanan pembumian mendekati nol atau < 1 Ohm agar mendapatkan hasil yang ideal [1].

Beberapa sistem pembumian yang ada adalah sistem pembumian Rod, sistem pembumian Pelat, sistem pembuiman Grid-Rod dan sistem pembumian Pemasangan dari jenis pembumian tersebut tergantung dari tekstur tanah pada lokasi pembumiannya. Adapun beberapa jenis tanah yaitu tanah lempung, tanah berpasir, tanah liat ladang, tanah sawah, tanah berpasir berdebu dan tanah berbatu. Tekstur tanah tersebut memiliki tahanan yang berbeda-beda yang mengakibatkan tahanan jenis tanahnya berbeda-beda [2]. Rumah Sakit Bali Mandara berada di dekat pantai dengan tahanan jenis yang tinggi. Berdasarkan permasalahan dibutuhkan sistem pembumian yang lain seperti sistem pembumian Pelat, sistem Grid-Rod, pembumian dan pembumian Mesh [3].

Dalam penelitian ini, penyelesaian permasalahan dilakukan dengan metode pengukuran secara langsung dengan pendekatan kuantitatif deskriptif. Penelitian secara langsung akan dilakukan dengan melakukan pengukuran tahanan jenis tanah pada area sekitar Rumah Sakit Bali Mandara penambahan zat aditif penambahan zat aditif garam dan gypsum. Hasil pengukuran selanjutnya dilakukan perhitungan dengan penyelesaian rumus sistem pembumian untuk memperoleh perbandingan tahanan jenis tanah [4].

Penelitian ini memiliki tujuan yaitu untuk mengetahui jenis sistem pembumian yang optimal pada Gedung Unit Gawat Darurat Sakit Bali Mandara mengetahui efektifitas campuran zat aditif

garam dan gypsum untuk menunurunkan tahanan jenis tanah pada Gedung Unit Gawat Darurat agar mendapatkan nilai pembumian yang sesuai standar. [5]

KAJIAN PUSTAKA

2.1. Sistem Pembumian Elektroda Batang (Rod)

Elektorda batang merupakan sebuah elektroda yang terbuat dari logam batang yang di pancang secara vertikal kedalam Untuk tanah. mencari nilai tahanan pembumian elektroda batang (rod) menggunakan persamaan (1).

$$R = \frac{\rho}{2\pi L} \left[\ln\left(\frac{4L}{a}\right) - 1 \right] \tag{1}$$

Keterangan:

R = Tahanan pembumian (Ω) = Tahanan jenis tanah (Ω -meter) = Panjang elektroda rod (m) L = Jari-jari elektroda rod (m)

2.2. Sistem Pembumian Elektroda Pelat

Elektroda pelat merupakan sebuah elektroda yang terbuat dari pelat logam yang diletakkan secara vertikal dengan tanah. Untuk mencari nilai tahanan pembumian elektroda pelat menggunakan jenis persamaan (2).

$$R_{pl} = \frac{\rho}{4\pi L} \left[1 + 1.84 \frac{b}{t} \right] \tag{2}$$

Keterangan:

 $Rpl = Tahanan pembumian pelat (\Omega)$ = Tahanan jenis tanah (Ω -meter) = Kedalaman penanaman pelat (meter) = Lebar elektroda pelat (meter) = Panjang elektroda pelat (meter)

2.3. Sistem Pembumian Grid-Rod

Sistem Pembumian *grid-rod* merupakan sistem pembumian yang menggunakan batang – batang elektroda ditanam sejajar di bawah permukaan tanah dan terhubung satu dengan lainnya. Untuk mencari nilai tahanan pembumian grid-rod menggunakan persamaan (3).

$$R_G = \frac{R_1 R_2 - R_m^2}{R_1 + R_2 - 2R_m} \tag{3}$$

$$\begin{split} R_G &= \frac{R_1 R_2 - R_m^2}{R_1 + R_2 - 2R_m} \\ R_1 & \text{ diperoleh dari persamaan (4).} \\ R_1 &= \frac{\rho}{\pi L_c} \left[L_n \left(\frac{2L_c}{a'} \right) + \frac{K_1 L_C}{\sqrt{A}} - K_2 \right] \\ R_2 & \text{ diperoleh dari persamaan (5).} \end{split}$$

$$R_2 = \frac{\rho}{2\pi n_c L_R} \left[I_n \left(\frac{4L_R}{b} \right) - 1 + \frac{2K_1 L_R}{\sqrt{A}} (\sqrt{n_R} - 1)^2 \right]$$
 (5)

 R_m diperoleh dari persamaan (6)

$$R_{m} = \frac{\rho}{\pi L_{c}} \left[I_{n} \left(\frac{2L_{c}}{L_{r}} \right) + \frac{K_{1}L_{c}}{\sqrt{A}} - K_{2} + 1 \right]$$
 (6)

Keterangan:

 R_G = Tahanan pembumian *Grid-Rod* (Ω)

 ρ = Tahanan jenis tanah (Meter)

A = Luas area pembumian (m²)

h = Kedalaman penanaman sistem pembumian dari permukaan tanah (meter)

 L_c = Total panjang konduktor *Mesh* (meter)

 L_r = Panjang elektroda *Rod* (meter)

 n_r = Jumlah elektroda Rod

 L_R = Total panjang elektroda *Rod* (meter)

 $a' = \sqrt{a.2h}$ konduktor yang ditanam pada kedalaman h

a = Diameter konduktor Mesh (meter)

b = Diameter konduktor *Rod* (meter)

 K_1 = 0,10 dan K_2 = 4,5 dengan nilai c maksimal, koefisien yang bergantung dari perbandingan panjang dan lebar

L_p = Panjang perifer konduktor Mesh pada tepi sistem pembumian (meter)

L_x = Panjang maksimal konduktorMesh pada sumbu x (meter)

L_y = Panjang maksimal konduktor Mesh

D = Jarak antar elektroda

2.4. Sistem Pembumian Mesh

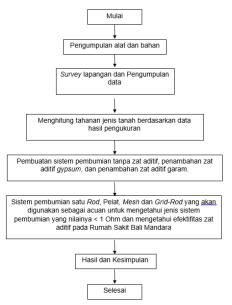
Sistem pembumian *mesh* merupakan sistem pembumian dengan konduktor yang ditanaman secara horizontal dan terhubung satu sama lain sehingga membentuk jaring – jaring pada permukaan tanah. Untuk mencari nilai tahanan pembumian *mesh* menggunakan persamaan (7).

$$R_m = \rho \left[\frac{1}{L_C} + \frac{1}{\sqrt{20A}} \left(\frac{1}{1 + h\sqrt{\frac{20}{A}}} \right) \right] \tag{7}$$

Keterangan:

 R_m = Tahanan pembumian $Mesh(\Omega)$

ρ = Tahanan jenis tanah (Ω-meter)


 $A = Luas area Mesh (m^2)$

h = Kedalaman penanaman *Mesh* dari permukaan tanah

 L_C = Total panjang konduktor *Mesh*

3. METODOLOGI PENELITIAN

Penelitian dilaksanakan di Rumah Sakit Bali Mandara yang beralamatkan di Jalan Bypass Ngurah Rai Nomor 548, Desa Sanur Kauh, Kecamatan Denpasar Selatan, Kota Denpasar, Bali dilaksanakan dari bulan Januari 2024. Analisis Data dapat dilihat pada Gambar 2:

Gambar 1. Diagram alir penelitian

Berikut penjelasan pada Gambar 1: Langkah 1. Pengumpulan Alat dan Bahan

Penelitian ini dimulai dengan mengumpulkan alat dan bahan untuk kelengkapan pada saat melakukan penelitian.

Langkah 2. *Survey* Lapangan dar Pengumpulan Data

Melakukan survey pada area sekitar Rumah Sakit Bali Mandara yang akan digunakan sebagai tempat penilitian dan mengumpulkan data, yaitu data tahanan tanah tanpa zat aditif, dengan zat aditif gypsum, dan dengan zat aditifi garam.

Langkah 3. Menghitung Tahanan Jenis Tanah Berdasarkan Data Hasil Pengukuran

Perhitungan tahanan jenis tanah dilakukan setelah mendapatkan data pengukuran tahanan tanah pada lokasi penelitian.

Langkah 4. Pembuatan Sistem Pembumian

Perencanaan pembuatan sistem pembumian yang optimal digunakan yaitu satu *rod*, pelat, *grid-rod*, dan *mesh*.

Langkah 5. Sistem Pembumian Satu Rod, Pelat, Grid-Rod, dan Mesh Yang Akan Digunakan Sebagai Acuan Untuk Mengetahui Jenis Sistem Pembumian Yang Nilainya <1 Ohm dan Mengetahui Efektifitas Zat Aditif Pada Rumah Sakit Bali Mandara

Menghitung persamaan setiap sistem pembumian pada tanah tanpa zat aditif, dengan zat aditif *gypsum*, dan dengan zat aditif garam untuk mendapatkan nilai tahanan pembumian <1 Ohm pada Gedung Unit Gawat Darurat Rumah Sakit Bali Mandara.

Langkah 6. Hasil dan Kesimpulan

Berdasarkan langkah ke lima mendapatkan hasil dari perhitungan dan dapat menarik kesimpulan.

4. HASIL DAN PEMBAHASAN

4.1. Hasil Pengukuran

Berikut merupakan hasil dari pengukuran nilai tahanan pada masingmasing zat aditif yang digunakan untuk penelitian:

4.1.1. Hasil Pengukuran Tahanan Tanah Tanpa Zat Aditif

Tabel 1. Pengukuran Tahanan Tanah Tanpa Zat Aditif

ranpa Zat Autti						
No	Hari/Tanggal	Waktu Pengukuran	Nilai Pengukuran (Ω)	ρ Tanah = $2πaR(Ω.m)$		
		08.00 WITA	0,27	33,912		
1	Senin, 15	12.00 WITA	0,27	33,912		
	Maret 2024	16.00 WITA	0,26	32,656		
	Calana 16	08.00 WITA	0,27	33,912		
2	Selasa, 16 Maret 2024	12.00 WITA	0,25	31,4		
	Waret 2024	16.00 WITA	0,27	33,912		
	Dahu 17	08.00 WITA	0,26	32,656		
	Rabu, 17 Maret 2024	12.00 WITA	0,25	31,4		
	Waret 2024	16.00 WITA	0,27	33,912		
	I/:- 40	08.00 WITA	0,24	30,144		
4	Kamis, 18 Maret 2024	12.00 WITA	0,25	31,4		
	Mai 61 2024	16.00 WITA	0,25	31,4		
	l	08.00 WITA	0,25	31,4		
5	Jumat, 19 Maret 2024	12.00 WITA	0,27	33,912		
	IVIAI 61 2024	16.00 WITA	0,26	32,656		
	Cabbi 20	08.00 WITA	0,26	32,656		
6	Sabtu, 20 Maret 2024	12.00 WITA	0,27	33,912		
	War 61 2024	16.00 WITA	0,27	33,912		
	Min 24	08.00 WITA	0,27	33,912		
7	Minggu, 21 Maret 2024	12.00 WITA	0,27	33,912		
	Maret 2024	16.00 WITA	0,27	33,912		

Berdasarkan pada Tabel 1 dapat dilihat bahwa nilai tahanan tanah tanpa menggunakan zat aditif diperoleh nilai 0,24 ohm sampai dengan 0,27 ohm. Sehingga nilai tahanan tanah yang tertinggi yaitu 0,27 ohm dengan nilai tahanan jenis tanah $33,912~\Omega.m.$

4.1.2. Hasil Pengukuran Tahanan Tanah Dengan Zat Aditif *Gypsum*.

Tabel 2. Hasil Pengukuran Tahanan Tanah Dengan Zat Aditif *Gypsum*

		0	, ,	
No	Hari/Tanggal	Waktu pengukuran	Nilai Pengukuran (Ω)	ρ Tanah = 2 π aR (Ω .m)
	0 45	08.00 WITA	0,19	23,864
1	Senin, 15 Maret 2024	12.00 WITA	0,2	25,12
	Maret 2024	16.00 WITA	0,2	25,12
	C-I 40	08.00 WITA	0,19	23,864
2	Selasa, 16 Maret 2024	12.00 WITA	0,19	23,864
	Maret 2024	16.00 WITA	0,21	26,376
	D-h 47	08.00 WITA	0,2	25,12
3	Rabu, 17 Maret 2024	12.00 WITA	0,21	26,376
	Maret 2024	16.00 WITA	0,21	26,376
	Kamia 10	08.00 WITA	0,19	23,864
4	Kamis, 18 Maret 2024	12.00 WITA	0,2	25,12
	Walet 2024	16.00 WITA	0,2	25,12
	lumet 10	08.00 WITA	0,21	26,376
5	Jumat, 19 Maret 2024	12.00 WITA	0,21	26,376
	Maret 2024	16.00 WITA	0,21	26,376
	Cabbi 20	08.00 WITA	0,21	26,376
6	Sabtu, 20 Maret 2024	12.00 WITA	0,21	26,376
	ivialet 2024	16.00 WITA	0,21	26,376
	Minagu 24	08.00 WITA	0,19	23,864
7	Minggu, 21 Maret 2024	12.00 WITA	0,21	26,376
	Maret 2024	16.00 WITA	0,21	26,376

Berdasarkan pada Tabel 2 dapat dilihat bahwa nilai tahanan tanah dengan menggunakan zat aditif gypsum diperoleh tahanan tanah berkisar 0,19 ohm sampai dengan 0,21 ohm. Sehingga nilai tahanan tanah yang tertinggi yaitu 0,21 ohm dengan nilai tahanan jenis tanah 26,376 Ω .m. Berdasarkan hasil pengukuran tersebut bila gypsum terjadi ditambah zat aditif penurunan 7,54 Ω .m (22,2%). Gypsum dapat menurunkan nilai tahanan pembumian karena gypsum memiliki kemampuan menyerap air yang dapat meningkatkan kelembaban tanah [6].

4.1.3. Hasil Pengukuran Tahanan Tanah Dengan Zat Aditif Garam

Tabel 3. Pengukuran Tahanan Tanah Dengan Zat Aditif Garam

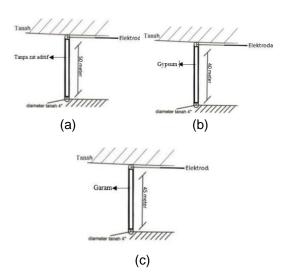
No	Hari/Tanggal	Waktu Pengukuran	Nilai Pengukuran (Ω)	ρ Tanah = $2π$ aR $(Ω.m)$
	0 45	08.00 WITA	0,18	22,608
1	Senin, 15 Maret	12.00 WITA	0,2	25,12
	2024	16.00 WITA	0,2	25,12
	0.1	08.00 WITA	0,19	23,864
2	Selasa, 16 Maret	12.00 WITA	0,19	23,864
	2024	16.00 WITA	0,21	26,376
	D-1 47	08.00 WITA	0,21	26,376
3	Rabu, 17 Maret	12.00 WITA	0,19	23,864
	2024	16.00 WITA	0,22	27,632
	K 40	08.00 WITA	0,2	25,12
4	Kamis, 18 Maret	12.00 WITA	0,19	23,864
	2024	16.00 WITA	0,2	25,12
	1	08.00 WITA	0,24	30,144
5	Jumat, 19 Maret	12.00 WITA	0,23	28,888
	2024	16.00 WITA	0,24	30,144
	0-14 00	08.00 WITA	0,24	30,144
6	Sabtu, 20 Maret	12.00 WITA	0,24	30,144
	2024	16.00 WITA	0,23	28,888
_	Minagu 24	08.00 WITA	0,24	30,144
7	Minggu, 21 Maret	12.00 WITA	0,24	30,144
	2024	16.00 WITA	0,24	30,144

Berdasarkan pada Tabel 3 dapat dilihat bahwa nilai tahanan tanah menggunakan zat aditif garam diperoleh tahanan tanah berkisar 0,18 ohm sampai dengan 0,24 ohm. Sehingga nilai tahanan tanah yang tertinggi yaitu 0,24 ohm dengan

nilai tahanan jenis tanah 30,144 Ω .m. Berdasarkan hasil pengukuran tersebut bila ditambahkan zat aditif garam terjadi penurunan 3,768 Ω .m (11,1%). Garam dapat digunakan untuk menurunkan nilai tahanan pembumian karena garam dapat menurunkan resistivitas pada tanah sehingga arus listrik dapat mengalir lebih mudah [7].

4.2. Analisis Hasil dan Pembahasan

4.2.1. Hasil Perhitungan Pembumian Berdasarkan Hasil Pengukuran Tahanan Jenis Tanah untuk Mencapai R<1 Ohm


1) Analisis Perhitungan Tahanan Pentanahan Tipe Satu *Rod*

Pada penelitian dilakukan perhitungan dengan menggunakan persamaan (1) dengan menggunakan nilai L= 5, ρ tanpa zat aditif = 33,912 Ω .m, ρ zat aditif gypsum = 26,376 Ω .m, ρ zat aditif garam = 30,144 Ω .m. Adapun hasil perhitungan dapat dilihat pada Tabel 4.

Tabel 4. Nilai Tahanan Pembumian Berdasarkan Perhitungan Tahanan Pentanahan Tipe Satu *Rod*

No	Nilai L	Tanpa Zat Aditif	Dengan Menggunakan Zat Aditif <i>Gypsum</i> (Ω)	Dengan Menggunakan Zat Aditif Garam (Ω)
1	5	6,932066	5,39161	6,16184
2	10	3,84033	2,98693	3,41363
3	15	2,70619	2,10481	2,4055
4	20	2,10732	1,63902	1,87317
5	25	1,73405	1,34871	1,54138
6	30	1,47786	1,14945	1,31365
7	35	1,29052	1,00374	1,14713
8	40	1,14723	0,892292	1,01976
9	45	1,0339	-	0,919019
10	50	0.941886	-	_

Berdasarkan perhitungan pada Tabel 4 untuk mendapatkan nilai R < 1 ohm sistem pembumian tipe satu rod tanpa menggunakan zat aditif memerlukan panjang elektroda dan kedalaman lubang vaitu 50 meter dengan nilai tahanan pembumian yaitu 0,941886 ohm dapat dilihat pada Gambar 6 (a). Pada penambahan zat aditif gypsum diperlukan panjang elektroda dan kedalaman lubang yaitu 40 meter dengan nilai tahanan pembumian 0,892292 ohm dapat dilihat pada Gambar 6 (b). Pada Penambahan zat aditif garam diperlukan panjang elektroda dan kedalaman lubang yaitu 45 meter dengan nilai tahanan pembumian 0.919019 ohm dapat dilihat pada Gambar 6 (c).

Gambar 6. Sistem Pembumian Tipe Satu Rod (a) Tanpa Zat Aditif (b) Penambahan Zat Aditif Gypsum (c) Penambahan Zat Aditif Garam

2) Analisis Perhitungan Tahanan Pentanahan Tipe Pelat

Pada penelitian dilakukan perhitungan dengan menggunakan persamaan (2) dengan menggunakan nilai L = 1 m, b = 1 m dan t = 1 m, tanpa zat aditif dengan ρ = 33,912 Ω .m dan menggunakan campuran zat aditif garam dan $gypsum \rho$ = 27,632 Ω .m. Sehingga dapat diperoleh hasil seperti pada Tabel 5 dan Tabel 6.

Tabel 5. Nilai Tahanan Pembumian Berdasarkan Perhitungan Tahanan Pembumian Tipe Pelat Dengan Nilai t = 7m

No	Nilai L dan b (m)	Nilai t (m)	Tanpa Zat Aditif	Dengan Menggunakan Zat Aditif Gypsum (Ω)	Dengan Menggunakan Zat Aditif Garam (Ω)
1	1	7	3,4	2,652	3
2	2	7	2	1,6	1,83
3	3	7	1,6	1,252	1,43
4	4	7	1,384	1	1,23
5	5	7	1,249	0,972	1,11
6	6	7	1,159	-	0,973
7	7	7	1,09	-	-
8	8	7	1,04	-	-
9	9	7	1	-	-
10	10	7	0,979	-	-

Berdasarkan perhitungan pada Tabel 5 untuk mendapatkan nilai R < 1 ohm untuk nilai tahanan pembumian tanpa zat aditif dibutuhkan panjang elektroda / kedalaman penanaman (t) = 7 meter sedangkan untuk panjang dan lebar pelat (L) dan (b) = 10 meter. Dengan pelat yang di jual di pasaran memiliki lebar dan panjang 1x1 meter maka di perlukan 10 pelat. Maka mendapatkan hasil tahanan pembumian sebesar 0,979 ohm.

Pada Tabel 5 dapat diketahui nilai tahanan pembumian dengan pemberian zat

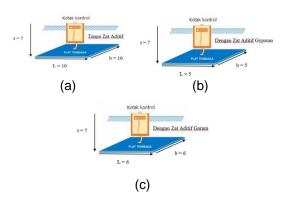
aditif *gypsum* dibutuhkan panjang elektroda / kedalaman penanaman (t) = 7 meter sedangkan untuk panjang dan lebar pelat (L) dan (b) = 5 meter. Dengan pelat yang di jual di pasaran memiliki lebar dan panjang 1x1 meter maka di perlukan 5 pelat. Maka mendapatkan hasil tahanan pembumian sebesar 0.972 ohm.

Pada Tabel 5 juga dapat diketahui nilai tahanan pembumian dengan pemberian zat aditif garam dibutuhkan panjang elektroda / kedalaman penanaman (t) = 7 meter sedangkan untuk panjang dan lebar pelat (L) dan (b) = 6 meter. Dengan pelat yang di jual di pasaran memiliki lebar dan panjang 1x1 meter maka di perlukan 6 pelat. Maka mendapatkan hasil tahanan pembumian sebesar 0,958 ohm.

Tabel 6. Nilai Tahanan Pembumian Berdasarkan Perhitungan Tahanan Pembumian Tipe Pelat Dengan Nilai t = 8m.

No	Nilai L dan b (m)	Nilai t (m)	Tanpa Zat Aditif	Dengan Menggunakan Zat Aditif Gypsum (Ω)	Dengan Menggunakan Zat Aditif Garam (Ω)
1	1	8	3,321	2,583	2,952
2	2	8	1,971	1,533	1,752
3	3	8	1,521	1,183	1,352
4	4	8	1,296	1,008	1,152
5	5	8	1,161	0,903	1,032
6	6	8	1,071	-	0,952
7	7	8	1,006	-	-
8	8	8	0,958	-	-

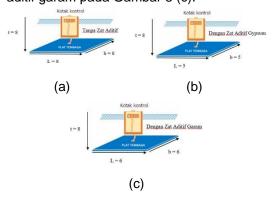
Berdasarkan perhitungan pada Tabel 6 untuk mendapatkan nilai R < 1 ohm untuk nilai tahanan pembumian tanpa zat aditif dibutuhkan panjang elektroda / kedalaman penanaman (t) = 8 meter sedangkan untuk panjang dan lebar pelat (L) dan (b) = 8 meter. Dengan pelat yang di jual di pasaran memiliki lebar dan panjang 1x1 meter maka di perlukan 8 pelat. Maka mendapatkan hasil tahanan pembumian sebesar 0,958 ohm.


Pada Tabel 6 dapat diketahui nilai tahanan pembumian dengan pemberian zat aditif *gypsum* dibutuhkan panjang elektroda / kedalaman penanaman (t) = 8 meter sedangkan untuk panjang dan lebar pelat (L) dan (b) = 5 meter. Dengan pelat yang di jual di pasaran memiliki lebar dan panjang 1x1 meter maka di perlukan 5 pelat. Maka mendapatkan hasil tahanan pembumian sebesar 0,903 ohm.

Pada Tabel 6 juga dapat diketahui nilai tahanan pembumian dengan pemberian zat aditif garam dibutuhkan panjang elektroda / kedalaman penanaman (t) = 8 meter sedangkan untuk panjang dan lebar pelat (L) dan (b) = 6 meter. Dengan

pelat yang di jual di pasaran memiliki lebar dan panjang 1x1 meter maka di perlukan 6 pelat. Maka mendapatkan hasil tahanan pembumian sebesar 0,952 ohm.

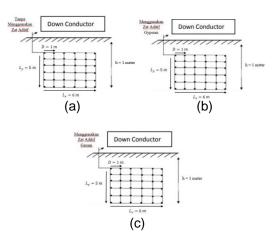
a) Desain Sistem Pembumian TipePelat Dengan t = 7 m


Berdasarkan perhitungan pada Tabel 5 adapun desain sistem pembumian tipe pelat tanpa zat aditif dengan nilai t = 6 m yang bisa dilihat pada Gambar 7 (a). Dengan penambahan zat aditif *gypsum* pada Gambar 7 (b). Dan dengan penambahan zat aditif garam pada Gambar 7 (c).

Gambar 7. Sistem Pembumian Tipe Pelat Dengan t = 7 m (a) Tanpa Zat Aditif (b) Penambahan Zat Aditif *Gypsum* (c) Penambahan Zat Aditif Garam

b) Desain Sistem Pembumian Tipe Pelat Dengan t = 8 m

Berdasarkan perhitungan pada Tabel 6 adapun desain sistem pembumian tipe pelat tanpa zat aditif dengan nilai t = 6 m yang bisa dilihat pada Gambar 8 (a). Dengan penambahan zat aditif *gypsum* pada Gambar 8 (b). Dan dengan penambahan zat aditif garam pada Gambar 8 (c).


Gambar 8. Sistem Pembumian Tipe Pelat Dengan t = 8 m (a) Tanpa Zat Aditif (b) Penambahan Zat Aditif *Gypsum* (c) Penambahan Zat Aditif Garam

3) Analisis perhitungan tahanan pentanahan tipe *Grid-Rod*

Pada Pada penelitian dilakukan perhitungan dengan menggunakan persamaan (3). R_1 diperoleh dari persamaan (4), R_2 diperoleh dari persamaan (5), dan R_m diperoleh dari persamaan (6) dengan menggunakan nilai ρ tanpa zat aditif = 33,912 Ω .m, ρ zat aditif gypsum = 26,376 Ω .m, dan , ρ zat aditif garam = 30,144 Ω .m.

Sehingga dapat diperoleh hasil tanpa zat aditif R_1 =0,6738 ohm, R_2 = 0,00555 ohm, R_m = 1,3972 ohm, dan R_G = 0,921 ohm. Hasil menggunakan penambahan zat aditif gypsum R_1 = 0,5241 ohm, R_2 = 0,00431 ohm, R_m = 1,087 ohm, R_G = 0,717 ohm. Hasil menggunakan penambahan zat aditif garam R_1 = 0,5989 ohm, R_2 = 0,00493 ohm, R_m = 1,242 ohm, R_G = 0,591 ohm.

Berdasarkan perhitungan sistem pembumian *grid* – *rod* adapun gambar rancangan sistem pembumian tipe *grid* – *rod* tanpa zat aditif yang bisa dilihat pada Gambar 11 (a). Dengan penambahan zat aditif *gypsum* pada Gambar 11 (b). Dan dengan penambahan zat aditif garam pada Gambar 11 (c).

Gambar 9. Sistem Pembumian Tipe *Grid* – *Rod* (a) Tanpa Zat Aditif (b) Penambahan Zat Aditif *Gypsum* (c) Penambahan Zat Aditif Garam

4) Analisis Perhitungan Tahanan Pentanahan Tipe *Mesh*

Pada penelitian dilakukan perhitungan dengan menggunakan persamaan (7) dengan menggunakan nilai A = 5 m, h = 5 m dan Lc = 5 m, ρ tanpa zat aditif = 33,912

 Ω .m, ρ penambahan zat aditif $gypsum = 26,376 \ \Omega$.m, dan ρ penambahan zat aditif garam = 30,144 \ \Omega.m. Sehingga dapat diperoleh hasil seperti pada Tabel 7 dan Tabel 8.

Tabel 7. Nilai Tahanan Pembumian Berdasarkan Perhitungan Tahanan Pembumian Tipe *Mesh* Dengan Nilai h =

	7111.							
No	Nilai A dan Lc (m)	Nilai h (m)	Tanpa Zat Aditif (Ω)	Dengan Menggunakan Zat Aditif Gypsum (Ω)	Dengan Menggunakan Zat Aditif Garam (Ω)			
1	5	4	7,159	5,568	6,363			
2	10	4	3,751	2,917	3,334			
3	15	4	2,609	2,029	2,319			
4	20	4	2,034	1,582	1,808			
5	25	4	1,687	1,312	1,5			
6	30	4	1,454	1,131	1,293			
7	35	4	1,287	1	1,144			
8	40	4	1,16	0,902	1,031			
9	45	4	1,061	-	0,943			
10	50	4	0,982	-	-			

Berdasarkan perhitungan pada Tabel 7 untuk mendapatkan nilai R < 1 ohm untuk nilai tahanan pembumian tanpa zat aditif dibutuhkan kedalaman penanaman (h) = 4 meter sedangkan untuk panjang *mesh* dan total panjang konduktor (A) dan (Lc) = 50 meter. Dengan *mesh* yang di jual di pasaran memiliki lebar dan panjang 1x1 meter maka di perlukan 50 jaring *mesh*. Maka mendapatkan hasil tahanan pembumian sebesar 0,982 ohm.

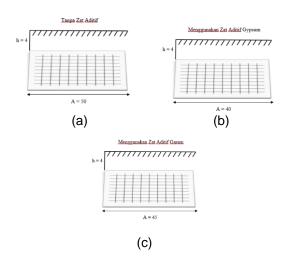
Pada Tabel 7 dapat diketahui nilai tahanan pembumian menggunakan zat aditif *gypsum* dibutuhkan kedalaman penanaman (h) = 4 meter sedangkan untuk panjang *mesh* dan total panjang elektroda (A) dan (Lc) = 40 meter. Dengan *mesh* yang di jual di pasaran memiliki lebar dan panjang 1x1 meter maka di perlukan 40 jaring *mesh*. Maka mendapatkan hasil tahanan pembumian sebesar 0,902 ohm.

Pada Tabel 7 juga dapat diketahui nilai tahanan pembumian menggunakan zat aditif garam dibutuhkan kedalaman penanaman (h) = 4 meter sedangkan untuk panjang *mesh* dan total panjang konduktor (A) dan (Lc) = 45 meter. Dengan *mesh* yang di jual di pasaran memiliki lebar dan panjang 1x1 meter maka di perlukan 45 jaring *mesh*. Maka mendapatkan hasil tahanan pembumian sebesar 0,943 ohm.

Tabel 8. Nilai Tahanan Pembumian Berdasarkan Perhitungan Tahanan

Pembumian Tipe	Mesh Dengan	Nilai	h =
	5 m		

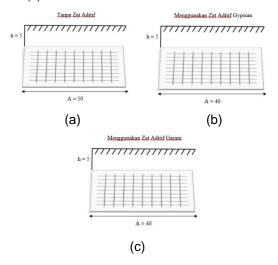
	No	Nilai A dan Lc (m)	Nilai h (m)	Tanpa Zat Aditif (Ω)	Dengan Menggunakan Zat Aditif Gypsum (Ω)	Dengan Menggunakan Zat Aditif Garam(Ω)
ı	1	5	5	7,091	5,515	6,303
ı	2	10	5	3,688	2,868	3,278
	3	15	5	2,549	1,983	2,266
	4	20	5	1,978	1,538	1,758
	5	25	5	1,633	1,27	1,452
	6	30	5	1,4	1,091	1,246
	7	35	5	1,237	0,962	1,099
	8	40	5	1,112	-	0,988
	9	45	5	1,014	-	-
	10	50	5	0,935	-	-


Berdasarkan perhitungan pada Tabel 8 untuk mendapatkan nilai R < 1 ohm untuk nilai tahanan pembumian tanpa zat aditif dibutuhkan kedalaman penanaman (h) = 5 meter sedangkan untuk panjang *mesh* dan total panjang konduktor (A) dan (Lc) = 50 meter. Dengan *mesh* yang di jual di pasaran memiliki lebar dan panjang 1x1 meter maka di perlukan 50 jaring *mesh*. Maka mendapatkan hasil tahanan pembumian sebesar 0,935 ohm.

Pada Tabel 8 dapat diketahui nilai tahanan pembumian menggunakan zat aditif *gypsum* dibutuhkan kedalaman penanaman (h) = 5 meter sedangkan untuk panjang *mesh* dan total panjang konduktor (A) dan (Lc) = 40 meter. Dengan *mesh* yang di jual di pasaran memiliki lebar dan panjang 1x1 meter maka di perlukan 40 jaring *mesh*. Maka mendapatkan hasil tahanan pembumian sebesar 0,962 ohm.

Pada Tabel 8 juga dapat diketahui nilai tahanan pembumian menggunakan zat aditif garam dibutuhkan kedalaman penanaman (h) = 5 meter sedangkan untuk panjang *mesh* dan total panjang konduktor (A) dan (Lc) = 40 meter. Dengan *mesh* yang di jual di pasaran memiliki lebar dan panjang 1x1 meter maka di perlukan 40 jaring *mesh*. Maka mendapatkan hasil tahanan pembumian sebesar 0,988 ohm.

a) Desain Sistem Pembumian Tipe Mesh Dengan h = 4 m


Berdasarkan perhitungan pada Tabel 7 adapun desain sistem pembumian tipe pelat tanpa zat aditif dengan nilai h = 3 m yang bisa dilihat pada Gambar 10 (a). Dengan penambahan zat aditif *gypsum* pada Gambar 10 (b). Dan dengan penambahan zat aditif garam pada Gambar 10 (c).

Gambar 10. Sistem Pembumian Tipe Mesh
(a) Tanpa Zat Aditif (b) Penambahan Zat
Aditif Gypsum (c) Penambahan Zat Aditif
Garam

b) Desain Sistem Pembumian Tipe Mesh Dengan h = 5 m

Berdasarkan perhitungan pada Tabel 8 adapun desain sistem pembumian tipe pelat tanpa zat aditif dengan nilai h = 5 m yang bisa dilihat pada Gambar 11 (a). Dengan penambahan zat aditif *gypsum* pada Gambar 11 (b). Dan dengan penambahan zat aditif garam pada Gambar 11 (c).

Gambar 11. Sistem Pembumian Tipe Mesh
(a) Tanpa Zat Aditif (b) Penambahan Zat
Aditif Gypsum (c) Penambahan Zat Aditif
Garam

4.2.2. Rancangan Anggaran Biaya

1) Rancangan Anggaran Biaya Dengan Tipe Satu *Rod*

Tabel 9. Rancangan Anggaran Biaya Satu

	Nuu					
No	Keterangan	Tanpa Zat Aditif	Gypsum	Garam		
1	Jumlah Rod	42 Batang	34 Batang	38 Batang		
2	Harga <i>Rod</i> Per Batang (Rp)	17.000	17.000	17.000		
3	Total Harga <i>Plat</i> (Rp)	714.000	578.000	646.000		
4	Jumlah Zat Aditif Per Meter (Kg)	-	5	5		
5	Total Zat Aditif (Kg)	-	200	225		
6	Harga Zat Aditif Per Kg (Rp)	-	8.000	12.000		
7	Total Harga Zat Aditif (Rp)	-	1.600.000	2.700.000		
8	Kedalaman Penanaman	50	40	45		
9	Ongkos Tukang Per Meter (Rp)	80.000	80.000	80.000		
10	Ongkos Pasang 1 Lot	450.000	450.000	450000		
11	Total Ongkos Tukang	4.450.000	3.650.000	4.050.000		
12	Total Biaya Keseluruhan (Rp)	5.164.000	5.828.000	7.396.000		
13	PPN 10%	516.400	582.800	739.600		
14	Total Biaya + PPN 10%	5.680.400	6.410.800	8.135.600		

Berdasarkan Tabel 9 total rancangan anggaran biaya sistem pembumian satu *rod* tanpa zat aditif sebesar Rp 5.680.400, menggunakan zat aditif *gypsum* sebesar Rp 6.410.800, dan menggunakan zat aditif garam sebesar Rp 8.135.600.

Rancangan Anggaran Biaya Dengan Tipe Pelat

Tabel 10. Rancangan Anggaran Biaya Tipe Pelat Dengan Kedalaman 7 Meter

	Pelat Dengan Kedalaman 7 Weter						
No	Keterangan	Tanpa Zat Aditif	Gypsum	Garam			
1	Jumlah <i>Plat</i>	10 Buah	5 Buah	6 Buah			
2	Harga Plat m2 (Rp)	4.140.000	4.140.000	4.140.000			
3	Total Harga <i>Plat</i> (Rp)	41.400.000	20.700.000	24.840.000			
4	Jumlah Zat Aditif Per Meter (Kg)	-	5	5			
5	Total Zat Aditif (Kg)	-	875	1260			
6	Harga Zat Aditif Per Kg (Rp)	-	8.000	12.000			
7	Total Harga Zat Aditif (Rp)	-	7.000.000	15.120.000			
8	Kedalaman Penanaman m³	700	175	252			
9	Ongkos Tukang Per m³ (Rp)	125.000	125.000	125.000			
10	Ongkos Pasang Plat (1x1)	750.000	750.000	750.000			
11	Total Ongkos Tukang	95.000.000	22.625.000	32.250.000			
12	Total Biaya Keseluruhan (Rp)	136.400.000	50.325.000	72.210.000			
13	PPN 10%	13.640.000	5.032.500	7.221.000			
14	Total Biaya + PPN 10%	150.040.000	55.357.500	79.431.000			

Berdasarkan Tabel 10 total rancangan anggaran biaya sistem pembumian pelat dengan kedalaman 7 m tanpa zat aditif sebesar Rp 150.040.000, menggunakan zat aditif *gypsum* sebesar Rp 55.357.500, dan menggunakan zat aditif garam sebesar Rp 79.431.000.

Tabel 11. Rancangan Anggaran Biaya Tipe Pelat Dengan Kedalaman 8 Meter

	relat Derigan Neualaman o Meter						
No	Keterangan	Tanpa Zat Aditif	Gypsum	Garam			
1	Jumlah Pelat	8 Buah	5 Buah	6 Buah			
2	Harga Plat Per m ² (Rp)	4.140.000	4.140.000	4.140.000			
3	Total Harga <i>Plat</i> (Rp)	33.120.000	20.700.000	24.840.000			
4	Jumlah Zat Aditif Per Meter (Kg)	-	5	5			
5	Total Zat Aditif (Kg)	-	1000	1440			
6	Harga Zat Aditif Per Kg (Rp)	-	8.000	12.000			
7	Total Harga Zat Aditif (Rp)	-	8.000.000	17.280.000			
8	Kedalaman Penanaman m³	512	200	288			
9	Ongkos Tukang Per m³ (Rp)	125.000	125.000	125.000			
10	Ongkos Pasang Plat (1x1)	750.000	750.000	750.000			
11	Total Ongkos Tukang	70.000.000	25.750.000	36.750.000			
12	Total Biaya Keseluruhan (Rp)	103.120.000	54.450.000	78.870.000			
13	PPN 10%	10.312.000	5.445.000	7.887.000			
14	Total Biaya + PPN 10%	113.432.000	59.895.000	86.757.000			

Berdasarkan Tabel 11 total rancangan anggaran biaya sistem pembumian pelat dengan kedalaman 8 m tanpa zat aditif sebesar Rp 113.432.000, menggunakan zat aditif gypsum sebesar Rp 59.895.000, dan menggunakan zat aditif garam sebesar Rp 86.757.000.

3) Rancangan Anggaran Biaya Dengan Tipe *Grid-Rod*

Tabel 12. Rancangan Anggaran Biaya Tipe Grid-Rod

No	Keterangan	Tanpa Zat Aditif	Gypsum	Garam
1	Jumlah Rod	22 Batang	22 Batang	22 Batang
2	Harga Rod (Rp)	17.000	17.000	17.000
3	Total Harga Rod (Rp)	374.000	374.000	374.000
4	Jumlah Zat Aditif Per Meter (Kg)	-	5	5
5	Total Zat Aditif (Kg)	-	135	135
6	Harga Zat Aditif Per Kg (Rp)	-	8.000	12.000
7	Total Harga Zat Aditif (Rp)	- 1.080.000		1.620.000
8	Kedalaman Penanaman	27	27	27
9	Ongkos Tukang Per Meter (Rp)	80.000	80.000	80.000
10	Ongkos Pasang Rod (1x1)	450.000	450.000	450.000
11	Total Ongkos Tukang	12.060.000	2.610.000	2.610.000
12	Total Biaya Keseluruhan Rod (Rp)	12.434.000	4.064.000	4.604.000
13	Jumlah Mesh	30 Buah	30 Buah	30 Buah
14	Harga Mesh (Rp)	1.100.000	1.100.000	1.100.000
15	Total Harga Mesh (Rp)	33.000.000	33.000.000	33.000.000
16	Jumlah Zat Aditif Per Meter (Kg)	-	5	5
17	Total Zat Aditif (Kg)	-	150	150
18	Harga Zat Aditif Per Kg (Rp)	-	8.000	12.000
19	Total Harga Zat Aditif (Rp)	-	1.200.000	1.800.000
20	Kedalaman Penanaman	30	30	30
21	Ongkos Tukang Per Meter (Rp)	125.000	125.000	125.000
22	Ongkos Pasang Mesh (1x1)	750.000	750.000	750.000
23	Total Ongkos Tukang	26.250.000	4.500.000	4.500.000
24	Total Biaya Keseluruhan Mesh (Rp)	59.250.000	38.700.000	39.300.00
25	Rod	12.434.000	4.064.000	4.604.000
26	Mesh	59.250.000	38.700.000	39.300.00
27	PPN 10%	7.168.400	4.276.400	4.390.400
28	Total Keseluruhan Biaya + PPN 10%	78.852.400	47.040.400	48.394.40

Berdasarkan Tabel 12 total rancangan anggaran biaya sistem pembumian *grid-rod* tanpa zat aditif sebesar

Rp 78.852.400, menggunakan zat aditif *gypsum* sebesar Rp 47.040.000, dan menggunakan zat aditif garam sebesar Rp 48.394.400.

4) Rancangan Anggaran Biaya Dengan Tipe *Mesh*

Tabel 13. Rancangan Anggaran Biaya Tipe Mesh Dengan Kedalaman 4 Meter

Web Bengan Redalaman 4 Weter				
No	Keterangan	Tanpa Zat Aditif	Gypsum	Garam
1	Jumlah Mesh	50 Buah	40 Buah	45 Buah
2	Harga Mesh m2 (Rp)	1.100.000	1.100.000	1.100.000
3	Total Harga <i>Mesh</i> (Rp)	55.000.000	44.000.000	49.500.000
4	Jumlah Zat Aditif Per Meter (Kg)	=	5	5
5	Total Zat Aditif (Kg)	-	800	900
6	Harga Zat Aditif Per Kg (Rp)	-	8.000	12.000
7	Total Harga Zat Aditif (Rp)	-	6.400.000	10.800.000
8	Kedalaman Penanaman m³	200	160	180
9	Ongkos Tukang Per m^3 (Rp)	125.000	125.000	125.000
10	Ongkos Pasang Mesh (1x1)	750.000	750.000	750.000
11	Total Ongkos Tukang	62.500.000	20.750.000	23.250.000
12	Total Biaya Keseluruhan (Rp)	117.500.000	71.150.000	83.550.000
13	PPN 10%	12.925.000	7.826.500	9.190.500
14	Total Keseluruhan Biaya + PPN 10%	142.175.000	86.091.500	101.090.500

Berdasarkan Tabel 13 total rancangan anggaran biaya sistem pembumian *mesh* dengan kedalaman 4 m tanpa zat aditif sebesar Rp 142.175.000, menggunakan zat aditif *gypsum* sebesar Rp 86.091.500, dan menggunakan zat aditif garam sebesar Rp 101.090.500.

Tabel 14. Rancangan Anggaran Biaya Tipe Mesh Dengan Kedalaman 5 Meter

No	Keterangan	Tanpa Zat Aditif	Gypsum	Garam
1	Jumlah <i>Mesh</i>	50 Buah	35 Buah	40 Buah
2	Harga $\mathit{Mesh}\ m^2$ (Rp)	1.100.000	1.100.000	1.100.000
3	Total Harga <i>Mesh</i> (Rp)	55.000.000	38.500.000	44.000.000
4	Jumlah Zat Aditif Per Meter (Kg)	-	5	5
5	Total Zat Aditif (Kg)	-	875	1000
6	Harga Zat Aditif Per Kg (Rp)	-	8.000	12.000
7	Total Harga Zat Aditif (Rp)	-	7.000.000	12.000.000
8	Kedalaman Penanaman m^3	250	175	200
9	Ongkos Tukang Per m^3 (Rp)	125.000	125.000	125.000
10	Ongkos Pasang <i>Mesh</i> (1x1)	750.000	750.000	750.000
11	Total Ongkos Tukang	68.750.000	22.625.000	25.750.000
12	Total Biaya Keseluruhan (Rp)	123.750.000	68.125.000	81.750.000
13	PPN 10%	13.612.500	7.493.750	8.992.500
14	Total Keseluruhan Biaya + PPN 10%	149.737.500	82.431.250	98.917.500

Berdasarkan Tabel 14 total rancangan anggaran biaya sistem pembumian *mesh* dengan kedalaman 5 m tanpa zat aditif sebesar Rp 149.737.500, menggunakan zat aditif *gypsum* sebesar Rp

82.431.250, dan menggunakan zat aditif garam sebesar Rp 98.917.500.

5) Rancangan Anggaran Biaya Termurah Antar Tipe Sistem Pembumian

Tabel 15. Rancangan Anggaran Biaya Termurah Antar Tipe Sistem Pembumian

	Tipe Rod	5.680.400	6.410.800	8.135.600
L.	Termurah	Adiitf	Gypsum	Garam
- [7	Anggaran Biaya	Tanpa Zat		

Berdasarkan Tabel 15 rancangan anggaran biaya 3 sistem pembumian termurah yaitu sistem pembumian tipe satu *rod* tanpa zat aditif sebesar Rp 5.680.400, sistem pembumian tipe satu *rod* dengan zat aditif *gypsum* sebesar Rp 6.410.800, dan sistem pembumian tipe satu *rod* dengan zat aditif garam sebesar Rp 8.135.600.

5. KESIMPULAN

Berdasarkan hasil pada penelitian dapat disimpulkan yaitu:

- 1) Pada sistem pembumian Satu Rod diperoleh nilai tahanan pembumian yaitu tanpa zat aditif 0,942 ohm, dengan tambahan zat aditif gypsum sebesar 0,892 ohm, serta dengan penambahan zat aditif garam 0,919 ohm. Sistem pembumian Pelat dengan kedalaman 7m dan 8m diperoleh nilai tahanan pembumian berurutan yaitu tanpa zat aditif 0,979 ohm dan 0,958 ohm, dengan tambahan zat aditif gypsum sebesar 0,972 ohm dan 0,903 ohm serta dengan penambahan zat aditif garam yaitu 0,973 ohm dan 0,952 ohm. Pada sistem pembumian Grid-Rod diperoleh nilai tahanan pembumian yaitu tanpa zat aditif 0,921 ohm, dengan tambahan zat aditif gypsum sebesar 0,717 ohm, serta dengan penambahan zat aditif garam 0,591 ohm. Kemudian, pada sistem pembumian mesh dengan panjang kedalaman penanaman 4m dam 5m diperoleh nilai tahanan pembumian berurutan yaitu tanpa zat aditif 0,982 ohm dam 0,935 ohm, dengan tambahan zat aditif gypsum sebesar 0,902 ohm dan 0,962 ohm serta dengan penambahan zat aditif garam yaitu 0,943 ohm dan 0.988 ohm.
- 2) Pemberian zat aditif gypsum dan garam efektif untuk menurunkan tahanan jenis tanah pada Rumah Sakit Bali Mandara. Nilai tahanan jenis tanah tanpa zat aditif 33,912 Ω.m dengan nilai pengukuran 0,27 ohm. Nilai tahanan jenis tanah dengan zat aditif gypsum 26,376 Ω.m

- dengan nilai pengukuran 0,19 terjadi penurunan 7,54 Ω .m (22,2%). Nilai tahanan jenis tanah dengan zat aditif garam 30,144 Ω .m dengan nilai pengukuran 0,24 terjadi penurunan 3,768 Ω .m (11,1%).
- 3) Pada Gedung Unit Gawat Darurat Rumah Sakit Bali Mandara tipe sistem pembumian yang ideal yaitu tipe satu rod tanpa zat aditif memerlukan biaya Rp 5.680.400 menggunakan 42 batang elektroda dengan nilai tahanan pembumian 0,9418 ohm kedalaman 50 m.

6. DAFTAR PUSTAKA

- BSN (Badan Standardisasi Nasional), Persyaatan Umum Instalasi Listrik 2000 (PUIL 2000), vol. 2000, no. PUIL. Jakarta: BSN (Badan Standardiasi Nasional), 2000.
- [2] Sudaryanto.2016. Analisis
 Perbandingan Nilai Tahanan
 Pembumian Pada Tanah Basah, Tanah
 Berpasir dan Tanah Ladang. Journal of
 Electrical Technology, Vol. 1, No. 1.
- [3] Yusmartato., Nasution R., Pelawi Z., dan Syaru R. 2021. Pengukuran Grounding Pada Gedung Rumah Sakit Grand Mitra Medika Medan Journal of Electrical Technology, Vol. 6, No.1.
- [4] Dewi, NWDPS., Janardana, IGN., Wijaya, WA. 2021. Pemanfaatan Pencampuran Gypsum Dengan Kalsium Oksida Sebagai Zat Aditif Pada Sistem Pembumian. Jurnal SPEKTRUM Vol. 8, No. 3.
- [5] Yusmartato, Harahap, R., Nasution, R., Ramadhani, S. 2021. Analisi Perbandingan Nilai Tahanan Pentanahan Di Gedung Dan Di Gardu Induk Pada Rumah Sakit Grand Mitra Medika Medan. SEMNASTEK UISU 2021, ISBN :978-623-7297-39-0.
- [6] Martin, Y., Despa, D., Afriani, L. 2018. Pengaruh Pencampuran Gypsum sebagai Zat Aditif untuk Penurunan Nilai Resistansi Grounding pada Elektroda Batang Tunggal.ISBN978-602-8692-34-2.
- [7] Janardana, IGN. 2005. Perbedaan Penambahan Garam Dengan Penambahan Bentonit Terhadap Nilai Tahanan Pentanahan Pada Sistem Pentanahan. Teknologi elektro, Vol 4, No 1.