IMPLEMENTASI FUZZY C-MEAN DAN ALGORITMA PARTICLE SWARM OPTIMIZATION UNTUK CLUSTERING KABUPATEN/KOTA DI INDONESIA BERDASARKAN INDIKATOR INDEKS PEMBANGUNAN MANUSIA

##plugins.pubIds.doi.readerDisplayName## https://doi.org/10.24843/MTK.2022.v11.i03.p380

Abstrak

This research is aimed to determine conduct clustering in accordance with the conditions of districts / cities throughout Indonesia based on the IPM indicator and to determine the performance comparison of Fuzzy C-Means using particle swarm optimization compared to ordinary fuzzy c mean. The study uses 514 district / city data in Indonesia based on four IPM indicators. The research show 4 clusters that describe the condition of the Indonesian region and based on the results of cluster validation shows that there are differences in the ordinary Fuzzy C-Means mean algorithm and Fuzzy C-Means using particle swarm optimization.

##plugins.generic.usageStats.downloads##

##plugins.generic.usageStats.noStats##

##submission.authorBiographies##

##submission.authorWithAffiliation##

Program Studi Matematika, Fakultas MIPA, Universitas Udayana

##submission.authorWithAffiliation##

Program Studi Matematika, Fakultas MIPA, Universitas Udayana

##submission.authorWithAffiliation##

Program Studi Matematika, Fakultas MIPA, Universitas Udayana

Diterbitkan
2022-08-31
##submission.howToCite##
DWIGUNA, I KADEK SONA; GANDHIADI, G.K.; HARINI, LUH PUTU IDA. IMPLEMENTASI FUZZY C-MEAN DAN ALGORITMA PARTICLE SWARM OPTIMIZATION UNTUK CLUSTERING KABUPATEN/KOTA DI INDONESIA BERDASARKAN INDIKATOR INDEKS PEMBANGUNAN MANUSIA. E-Jurnal Matematika, [S.l.], v. 11, n. 3, p. 191-198, aug. 2022. ISSN 2303-1751. Tersedia pada: <https://ojs.unud.ac.id/index.php/mtk/article/view/90745>. Tanggal Akses: 15 oct. 2025 doi: https://doi.org/10.24843/MTK.2022.v11.i03.p380.
Bagian
Articles

##plugins.generic.recommendByAuthor.heading##

1 2 3 > >>