PENERAPAN METODE PARTIAL LEAST SQUARE REGRESSION (PLSR) PADA KASUS SKIZOFRENIA

Abstract

Partial Least Square Regression (PLSR) is a method that combines principal component analysis and multiple linear regression, which aims to predict or analyze the dependent variable and more than one independent variable. The purpose of this study is to determine the equation model for the recurrence of schizophrenia patients using the PLSR method. The best number of components to form a PLSR model in this study is one component with a minimum RMSEP value of 0.6094 and an adjR2 value of 80.09 percent.

Downloads

Download data is not yet available.

Author Biographies

NI WAYAN ARI SUNDARI, Universitas Udayana

Program Studi Matematika Fakultas MIPA – Universitas Udayana

I GUSTI AYU MADE SRINADI, Universitas Udayana

Program Studi Matematika Fakultas MIPA – Universitas Udayana

MADE SUSILAWATI, Universitas Udayana

Program Studi Matematika Fakultas MIPA – Universitas Udayana

Published
2021-05-30
How to Cite
SUNDARI, NI WAYAN ARI; SRINADI, I GUSTI AYU MADE; SUSILAWATI, MADE. PENERAPAN METODE PARTIAL LEAST SQUARE REGRESSION (PLSR) PADA KASUS SKIZOFRENIA. E-Jurnal Matematika, [S.l.], v. 10, n. 2, p. 137-140, may 2021. ISSN 2303-1751. Available at: <https://ojs.unud.ac.id/index.php/mtk/article/view/73541>. Date accessed: 23 nov. 2024. doi: https://doi.org/10.24843/MTK.2021.v10.i02.p333.
Section
Articles

Most read articles by the same author(s)

<< < 1 2 3 4 5 6