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ABSTRACT 

Regression analysis is one of the statistical analyses used to estimate the relationship between the 

predictor and the response variable. Data are given in pairs, and the relationship between the 

predictor and the response variable was assumed to follow a nonparametric regression model. This 

model is flexible in estimating the curve when a typical data pattern does not follow a specific pattern. 

The nonparametric regression curve was approached by using the truncated spline function with 

several knots. The truncated spline estimator in nonparametric regression is linear in the observation. 

It is highly dependent on the knot points. The regression model's random error is assumed to have an 

independent normal distribution with zero mean and equal variance. The truncated spline's curve 

estimate was obtained by minimizing the error model through the least squared optimization method. 

The nonparametric regression truncated spline's estimator properties are linear, unbiased, and if the 

error is normally distributed, the estimator is normally distributed. 

Keywords: curve estimation, estimator properties, matrix approach, nonparametric regression, 

truncated spline. 

 

 

1. INTRODUCTION 

Nonparametric regression has received a 

lot of attention from researchers. This approach 

loosens assumptions about linearity, as well as 

information about functional form in 

regression analysis. Besides, this approach 

allows data to be explored more flexibly. It is a 

flexible regression in estimating the regression 

curve when, in some circumstances, a common 

data pattern does not follow a specific pattern 

(Mahmoud, 2019).  

There are several approaches to 

nonparametric regression, one of which is the 

truncated spline approach. Among the 

nonparametric regression models, spline 

regression has several features, such as it is a 

model with particular and excellent statistical 

interpretation and visual interpretation. The 

spline can model data on changing data 

patterns at certain sub-intervals because the 

spline is a polynomial slice with segmented 

properties. This segmented property provides 

more flexibility than ordinary polynomials, 

making it possible to adapt more effectively to 

the local characteristics of a function or data 

(Budiantara et al. (2015); Nurcahayani et al., 

(2019); Wening et al. (2020)).  

Previous research has been carried out by 

applying truncated spline nonparametric 

regression to various case data, such as pattern 

data related to poverty, population, education, 

and health (Budiantara et al. (2012); Fitriyani 

et al. (2016); Chamidah et al. (2019); 

Murbarani et al. (2019); Nurcahayani et al. 

(2019)). This study is conducted related to the 

curve estimation and estimator properties of 

one of the nonparametric regression models 

with a matrix approach. It is expected to 

provide a scientific insight into the process of 

curve estimation, and the properties of the 

nonparametric regression model's estimators 

with the spline truncated approach. 
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2. CURVE ESTIMATION OF THE 

NONPARAMETRIC REGRESSION 

TRUNCATED SPLINE 

The spline function is the sum of the 

polynomial functions with a truncated 

function. Consider the nonparametric 

regression model, where the 𝑔 curve estimation 

is done using a spline. Given paired data 

(𝑥𝑗 , 𝑦𝑗) and the relationship between 𝑥𝑗 and 𝑦𝑗 

assumed to follow a nonparametric regression 

model: 

 𝑦𝑗 = 𝑓(𝑥𝑗) + 𝜀𝑗 , 𝑗 = 1,2,⋯ , 𝑛 (1) 

This study is carried out with the 

regression curve 𝑓 approached with the spline 

function 𝑔 with knots 𝐾. The spline function 𝑔 
approaches regression curve with 𝑟 points of 

knot 𝐾, the spline regression model is obtained 

according to equation (1). If equation (1) is 

presented in a matrix form, the following form 

is obtained. 

 (

𝑦1
𝑦2
⋮
𝑦𝑛

) = (

𝑔(𝑥1)
𝑔(𝑥2)
⋮

𝑔(𝑥𝑛)

) + (

𝜀1
𝜀2
⋮
𝜀𝑛

) (2) 

The shape of the above equation’s 

regression curve 𝑔(𝑥𝑗) is assumed to be 

unknown, while the errors 𝜀𝑗 , 𝑗 = 1,2,⋯ , 𝑛 are 

mutually independent with zero mean and 𝜎2 
variance. The spline function in equation (2) 

can be described in the following form: 

 𝑔(𝑥𝑗) = 𝛼0 + 𝛼1𝑥𝑗 + 𝛼2𝑥𝑗
2+. . +𝛼𝑚𝑥𝑗

𝑚 

+ 𝛽1(𝑥𝑗 − 𝐾1)+
𝑚
+⋯  

+𝛽𝑟(𝑥𝑗 − 𝐾𝑟)+
𝑚

 (3) 

where 𝛼𝑖 and 𝛽𝑘 are a real constant, and a 

truncated function as in equation (3). If the 

truncated spline regression model is presented 

in the form of a matrix, it is obtained: 

 

(

𝑦1
𝑦2
⋮
𝑦𝑛

) = (

1 𝑥1 𝑥1
2 ⋯ 𝑥1

𝑚 (𝑥1 − 𝐾1)+
𝑚 ⋯ (𝑥1 − 𝐾𝑟)+

𝑚

1 𝑥2 𝑥2
2 ⋯ 𝑥2

𝑚 (𝑥2 − 𝐾1)+
𝑚 ⋯ (𝑥2 − 𝐾𝑟)+

𝑚

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮
1 𝑥𝑛 𝑥𝑛

2 ⋯ 𝑥𝑛
𝑚 (𝑥𝑛 − 𝐾1)+

𝑚 ⋯ (𝑥2 − 𝐾𝑟)+
𝑚

)

(

 
 
 
 
 

𝛼0
𝛼1
𝛼2
⋮
𝛼𝑚
𝛽1
⋮
𝛽𝑟 )

 
 
 
 
 

+ (

𝜀1
𝜀2
⋮
𝜀𝑛

) 

 

or it can be written as: 

𝒀 = 𝑿[𝐾1, 𝐾2, . . . , 𝐾𝑟] 𝜷 + 𝜺 

Furthermore, the parameter estimates of 𝜷 

are obtained using the least square method by 

completing the optimization. 

𝑀𝑖𝑛
𝜷
 {𝜺𝑇𝜺} = 𝑀𝑖𝑛

𝜷
 

{
 

 
(

𝜀1
𝜀2
⋮
𝜀𝑛

)

𝑇

(

𝜀1
𝜀2
⋮
𝜀𝑛

)

}
 

 

 

with,  

(

𝜀1
𝜀2
⋮
𝜀𝑛

)

𝑇

=

(

 
 
 
 
 
 

(

𝑦1
𝑦2
⋮
𝑦𝑛

) − (

1 𝑥1 ⋯ 𝑥1
𝑚 (𝑥1 − 𝐾1)+

𝑚 ⋯ (𝑥1 − 𝐾𝑟)+
𝑚

1 𝑥2 ⋯ 𝑥2
𝑚 (𝑥2 − 𝐾1)+

𝑚 ⋯ (𝑥2 − 𝐾𝑟)+
𝑚

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮
1 𝑥𝑛 ⋯ 𝑥𝑛

𝑚 (𝑥𝑛 − 𝐾1)+
𝑚 ⋯ (𝑥2 − 𝐾𝑟)+

𝑚

)

(

 
 
 
 
 

𝛼0
𝛼1
𝛼2
⋮
𝛼𝑚
𝛽1
⋮
𝛽𝑟 )

 
 
 
 
 

)

 
 
 
 
 
 

𝑇

 

and, 
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(

𝜀1
𝜀2
⋮
𝜀𝑛

) = (

𝑦1
𝑦2
⋮
𝑦𝑛

) − (

1 𝑥1 ⋯ 𝑥1
𝑚 (𝑥1 − 𝐾1)+

𝑚 ⋯ (𝑥1 − 𝐾𝑟)+
𝑚

1 𝑥2 ⋯ 𝑥2
𝑚 (𝑥2 − 𝐾1)+

𝑚 ⋯ (𝑥2 − 𝐾𝑟)+
𝑚

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮
1 𝑥𝑛 ⋯ 𝑥𝑛

𝑚 (𝑥𝑛 − 𝐾1)+
𝑚 ⋯ (𝑥2 − 𝐾𝑟)+

𝑚

)

(

 
 
 
 
 

𝛼0
𝛼1
𝛼2
⋮
𝛼𝑚
𝛽1
⋮
𝛽𝑟 )

 
 
 
 
 

 

 

In a more straightforward form of presentation, 

the estimator, 

 �̂� = (�̂�0 �̂�1 ⋯ �̂�𝑚 �̂�1 ⋯ �̂�𝑟)
𝑇 

can be obtained by solving an optimization that 

minimizes the number of squares of error 

concerning the vector 𝜷𝑇. Then the result is 

equalized to zero. 

 

𝑀𝑖𝑛
𝜷
 {𝜺𝑇𝜺} = 𝑀𝑖𝑛

𝜷
 {(𝒀 − 𝑿[𝐾1, 𝐾2, … , 𝐾𝑟] 𝜷)

𝑇(𝒀 − 𝑿[𝐾1, 𝐾2, . . . , 𝐾𝑟] 𝜷)} 

 

with 𝒀 = (𝑦1 𝑦2 ⋯ 𝑦𝑛)𝑇 is a vector of 

size 𝑛 𝑥 1 and 𝑿[𝐾1, 𝐾2, . . . , 𝐾𝑟] = 𝑿[𝑲] is a 

matrix of size 𝑛 𝑥 (𝑚 + 1 + 𝑟). The sum of 

squared error is given as follows. 

 

∑ 𝜀𝑗
2𝑛

𝑗=1   = 𝜺𝑇𝜺  

= (𝒀 − 𝑿[𝑲] 𝜷)𝑇(𝒀 − 𝑿[𝑲] 𝜷)  

= 𝒀𝑇𝒀 − 2𝜷𝑇𝑿[𝑲]𝑇𝒀 + 𝜷𝑇𝑿[𝑲]𝑇𝑿[𝑲]𝜷  

 

If the above equation is derived concerning 

vector 𝜷𝑇 and the result is equalized to zero, 

then the result of 𝝏𝜺𝑇𝜺 𝝏𝜷𝑇⁄ = 0 given as the 

following, 

 

𝝏𝜺𝑇𝜺

𝝏𝜷𝑇
= 𝟎 

               
𝝏(𝒀𝑇𝒀 − 2𝜷𝑇𝑿[𝑲]𝑇𝒀 + 𝜷𝑇𝑿[𝑲]𝑇𝑿[𝑲]𝜷)

𝝏𝜷𝑇
= 𝟎 

                                        −2𝑿[𝑲]𝑇𝒀 + 2𝑿[𝑲]𝑇𝑿[𝑲]𝜷 = 𝟎 

                                                                     𝑿[𝑲]𝑇𝑿[𝑲]𝜷 = 𝑿[𝑲]𝑇𝒀 

                                                                                           �̂� = (𝑿[𝑲]𝑇𝑿[𝑲])−1𝑿[𝑲]𝑇𝒀 

 

Consequently, the estimate for the spline 

regression curve with knots 𝐾 is given by, 

�̂�(𝑥𝑗) = 𝑿[𝑲]�̂�  

= 𝑿[𝑲](𝑿[𝑲]𝑇𝑿[𝑲])−1𝑿[𝑲]𝑇𝒀  

The equation can be written as the following 

form, with 𝑿[𝑲] (𝑿[𝑲]𝑇𝑿[𝑲])−𝟏𝑿[𝑲]𝑇 =
𝑨[𝑲] is a function of the knot points, and 𝑲 =
(𝐾1, 𝐾2, . . . , 𝐾𝑟)

𝑇 is the knot points. 

�̂�(𝑥𝑗) = 𝑨[𝑲] 𝒀  

3. ESTIMATOR PROPERTIES OF THE 

NONPARAMETRIC REGRESSION 

TRUNCATED SPLINE 

Further study is conducted regarding the 

properties of the truncated spline estimator in 

nonparametric regression. 

 

a. Linear Estimator 

In this section, a study of the linearity of 

the spline estimator in nonparametric 

regression is conducted. The spline 
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nonparametric regression model can be written 

in the following matrix form with 𝑲 =
(𝐾1, 𝐾2, . . . , 𝐾𝑟). 

𝒀 = 𝑿[𝑲] 𝜷 + 𝜺  

If 𝑿[𝑲] 𝜷 is written by 𝒈, with 𝑿[𝑲] is the 

function matrix of 𝑲, we get: 

𝒀 =𝒈 + 𝜺  

and,  

�̂�   = 𝑿[𝑲]�̂�  

= 𝑿[𝑲](𝑿[𝑲]𝑇𝑿[𝑲])−1𝑿[𝑲]𝑇𝒀  

= 𝑨[𝑲]𝒀  

Based on the above equation, it can be seen 

that the spline estimator �̂� is linear. This 

linearity can make it easier for researchers to 

form inference statistics for the spline 

approach. 

 

b. Unbiased Estimator 

In this section, the expected value of the 

estimator spline �̂� is determined to see whether 

the estimator is biased or not. Then obtained, 

𝐸(�̂�)  = 𝐸(𝑨[𝑲]𝒀)  

= 𝑨[𝑲]𝐸(𝒀)  

where, 

𝐸(𝒀)  = 𝐸(𝑿[𝑲]𝜷 + 𝜺)  

= 𝐸(𝑿[𝑲]𝜷) + 𝐸(𝜺)  

𝜺 is a vector of random error 𝜀𝑗 , 𝑗 = 1,2,⋯ , 𝑛 

that is mutually independent with zero mean, 

𝜇𝜺 = 𝐸(𝜺) = 0, and 𝜎2𝜺 = 𝜎
2
 variance. The 

following form is obtained,  

𝐸(𝒀)  = 𝐸(𝑿[𝑲]𝜷)  

= 𝑿[𝑲]𝜷  

Therefore, the expectations of the estimator �̂� 

are obtained with the following equation, 

𝐸(�̂�)  = 𝑨[𝑲]𝑿[𝑲]𝜷  

= 𝑿[𝑲](𝑿[𝑲]𝑇𝑿[𝑲])−1𝑿[𝑲]𝑇𝑿[𝑲]𝜷  

= 𝑿[𝑲]𝜷  

= 𝒈  

𝐸(�̂�) = 𝒈 indicates that the estimator �̂� is 

unbiased. 

 

 

c. Normally Distributed Estimator 

In this section, a study is conducted 

regarding the distribution of the spline 

estimator in nonparametric regression. In 

inference statistics, random error 𝜺 is assumed 

to follow a normal distribution with zero mean 

, 𝐸(𝜺) = 𝜇𝜺 = 𝟎, and 𝜎2𝑰 variance. Since the 

spline nonparametric regression model’s error 

is normally distributed, written as 𝑁 (𝟎, 𝜎2𝑰), 
the Moment Generating Function (MGF) of the 

𝒀 vector is given as follows. 

𝑀𝒀(𝒕)   = 𝑀𝒈+𝜺(𝒕)  

= 𝑀𝒈(𝒕) ∙ 𝑀𝜺(𝒕)  

= 𝐸(𝑒𝑥𝑝(𝒕𝑇𝒈)) ∙ 𝑀𝜺(𝒕)  

= 𝑒𝑥𝑝(𝒕𝑇𝒈) ∙ 𝑀𝜺(𝒕)  

= 𝑒𝑥𝑝(𝒕𝑇𝑿[𝑲]𝜷) ∙ 𝑀𝜺(𝒕)  

Since the spline nonparametric regression 

model's random error is normally distributed, 

the Moment Generating Function (or written as 

MGF) of the vector 𝜺 is given as follows. 

𝑀𝜺(𝒕) = 𝐸(𝑒𝑥𝑝(𝒕
𝑇𝜺))  

 = 𝑒𝑥𝑝 (𝒕𝑇𝜇𝜺 +
1

2
𝒕𝑇𝜎2𝜺𝑰𝒕)  

= 𝑒𝑥𝑝 (𝒕𝑇(0) +
1

2
𝒕𝑇𝜎2𝑰𝒕)  

= 𝑒𝑥𝑝 (
1

2
𝒕𝑇𝜎2𝑰𝒕)  

So we get MGF from the 𝒀 vector as the 

following. 

𝑀𝒀(𝒕) = 𝑒𝑥𝑝(𝒕
𝑇𝑿[𝑲]𝜷) ∙ 𝑒𝑥𝑝 (

1

2
𝒕𝑇𝜎2𝑰𝒕)  

 = 𝑒𝑥𝑝 (𝒕𝑇𝑿[𝑲]𝜷 +
1

2
𝒕𝑇𝜎2𝑰𝒕)  

The above results show the MGF of the normal 

distribution with mean 𝑿[𝑲] 𝜷 and variance 

𝜎2𝑰. This means that the vector 𝒀 of the spline 

nonparametric regression model follows a 

normal distribution with 𝑿[𝑲] 𝜷 mean and 𝜎2𝑰 
variance. 

The next step to determine the properties 

of the spline estimator in nonparametric 

regression is to find the distribution of the 

estimator �̂�. If �̂� = (𝑿[𝑲]𝑇𝑿[𝑲])−𝟏𝑿[𝑲]𝑇𝒀 is 

known, then the MGF of the estimator �̂� is 

given as follows. 
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𝑀�̂�(𝒕) = 𝑀(𝑿[𝑲]𝑇𝑿[𝑲])
−𝟏
𝑿[𝑲]𝑇𝒀

(𝒕)  

 = 𝑀𝒀((𝑿[𝑲]
𝑇𝑿[𝑲])−𝟏𝑿[𝑲]𝑇𝒕)  

 = 𝑒𝑥𝑝 {((𝑿[𝑲]𝑇𝑿[𝑲])−𝟏𝑿[𝑲]𝑇𝒕)
𝑇
𝑿[𝑲]𝜷 +

1

2
((𝑿[𝑲]𝑇𝑿[𝑲])−𝟏𝑿[𝑲]𝑇𝒕)

𝑇
𝜎2𝑰(𝑿[𝑲]𝑇𝑿[𝑲])−𝟏𝑿[𝑲]𝑇𝒕}  

= 𝑒𝑥𝑝 {(𝑿[𝑲]𝑇𝒕)𝑇((𝑿[𝑲]𝑇𝑿[𝑲])−𝟏)
𝑇
𝑿[𝑲]𝜷 +

1

2
(𝑿[𝑲]𝑇𝒕)𝑇((𝑿[𝑲]𝑇𝑿[𝑲])−𝟏)

𝑇
𝜎2𝑰(𝑿[𝑲]𝑇𝑿[𝑲])−𝟏𝑿[𝑲]𝑇𝒕}  

= 𝑒𝑥𝑝 {𝒕𝑇𝑿[𝑲](𝑿[𝑲]𝑇𝑿[𝑲])−𝟏𝑿[𝑲]𝜷 +

1

2
𝒕𝑇𝑿[𝑲](𝑿[𝑲]𝑇𝑿[𝑲])−𝟏𝜎2𝑰(𝑿[𝑲]𝑇𝑿[𝑲])−𝟏𝑿[𝑲]𝑇𝒕}  

= 𝑒𝑥𝑝 {𝒕𝑇[𝑿[𝑲](𝑿[𝑲]𝑇𝑿[𝑲])−𝟏𝑿[𝑲]𝜷] +
1

2
𝒕𝑇[𝑿[𝑲](𝑿[𝑲]𝑇𝑿[𝑲])−2𝑿[𝑲]𝑇𝜎2]𝒕}  

 

It is found that 𝑀�̂�(𝒕) is the MGF of the 

normal distribution with the mean and variance 

are given by, 

𝑀𝑒𝑎𝑛 = 𝑿[𝑲] (𝑿[𝑲] 𝑇𝑿[𝑲])−𝟏𝑿[𝑲] 𝜷 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 𝑿[𝑲](𝑿[𝑲]𝑇𝑿[𝑲])−2𝑿[𝑲]𝑇𝜎2 

Furthermore, taking into account the equation 

�̂� = 𝑨[𝑲] 𝒀, we will look for the distribution 

of the estimator �̂�. By using MGF, the 

following results were obtained. 

𝑀�̂�(𝒕) = 𝑀𝑨[𝑲]𝒀(𝒕)  

 = 𝑀𝒀(𝑨[𝑲]𝒕)  

In the previous section, we got 𝑀𝒀(𝒕)  =

𝑒𝑥𝑝  {𝒕𝑇𝑿[𝑲] 𝜷 +
1

2
𝒕𝑇𝜎2𝑰𝒕}, so, 

 

𝑀�̂�(𝒕) = 𝑒𝑥𝑝  {(𝑨[𝑲]𝒕)
𝑇𝑿[𝑲] 𝜷 +

1

2
(𝑨[𝑲]𝒕)𝑇𝜎2𝑰𝑨[𝑲]𝒕}  

 = 𝑒𝑥𝑝  {𝒕𝑇(𝑨[𝑲])𝑇𝑿[𝑲] 𝜷 +
1

2
𝒕𝑇(𝑨[𝑲])𝑇𝜎2𝑰𝑨[𝑲]𝒕}  

= 𝑒𝑥𝑝  {𝒕𝑇[(𝑨[𝑲])𝑇𝑿[𝑲] 𝜷] +
1

2
𝒕𝑇[(𝑨[𝑲])𝑇𝜎2𝑨[𝑲]]𝒕}  

 

𝑀�̂�(𝒕)

 

is the MGF of the normal distribution, 

with the mean (expected value) and variance 

are given in the following formulas, 

respectively. 

 

𝑀𝑒𝑎𝑛  = (𝑨[𝑲])𝑇𝑿[𝑲] 𝜷 

= (𝑿[𝑲] (𝑿[𝑲] 𝑇𝑿[𝑲])−𝟏𝑿[𝑲] 𝑇)
𝑇
𝑿[𝑲] 𝜷 

= 𝑿[𝑲](𝑿[𝑲] 𝑇𝑿[𝑲])−𝟏𝑿[𝑲] 𝑇𝑿[𝑲] 𝜷 

and,  

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = (𝑿[𝑲] (𝑿[𝑲] 𝑇𝑿[𝑲])−𝟏𝑿[𝑲] 𝑇)
𝑇
𝜎2𝑿[𝑲] (𝑿[𝑲] 𝑇𝑿[𝑲])−𝟏𝑿[𝑲] 𝑇  

= 𝑿[𝑲](𝑿[𝑲] 𝑇𝑿[𝑲])−𝟏𝑿[𝑲] 𝑇𝑿[𝑲] (𝑿[𝑲] 𝑇𝑿[𝑲])−𝟏𝑿[𝑲] 𝑇𝜎2  

= 𝑿[𝑲](𝑿[𝑲] 𝑇𝑿[𝑲])−𝟏𝑿[𝑲] 𝑇𝜎2  
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4. CONCLUSIONS 

From the studies that have been done, it 

can be seen that the spline estimator in 

nonparametric regression is linear in the 

observation 𝒀 = (𝑦1 𝑦2 ⋯ 𝑦𝑛)𝑇 and is 

highly dependent on the knot points 

𝐾1, 𝐾2, . . . , 𝐾𝑟. The curve estimate for the 

truncated spline was obtained, namely �̂�(𝑥) =
𝑨[𝑲] 𝒀, with 𝑨[𝑲] indicates the function of 

knot points 𝑲 = (𝐾1, 𝐾2, . . . , 𝐾𝑟)
𝑇. The 

estimator's properties are linear, unbiased, and 

if the error is normally distributed, the 

estimator is normally distributed. 
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