MEMODELKAN ANGKA GIZI BURUK DI PROVINSI BALI DENGAN PENDEKATAN REGRESI SPASIAL

Anak Agung Istri Ayu Pratami^{1§}, I Komang Gde Sukarsa², Ni Luh Putu Suciptawati³, Eka N Kencana⁴

¹Program Studi Matematika, Fakultas MIPA – Universitas Udayana [Email: <u>gekkistri@gmail.com</u>]

§Corresponding Author

ABSTRACT

Nutritional problems in toddler are still a serious problem in various districts/cities in Indonesia. The case of malnutrition in Bali Province vary in many regions and hypothesized to be influenced by geographic location, which is often known as spatial heterogeneity. To overcome this problem, a spatial regression method is used on this research. This study aims to model the factors that are hypothesized affect malnourished toddlers in Bali Province using spatial regression methods, i.e. spatial autoregressive model (SAR) and spatial error model (SEM). Both models have 5 predictors variable, i.e. the percentage of toddlers aged between 6 - 59 months who received vitamin A, the percentage of babies with low birth weight (LBW), the percentage of households with clean and healthy living behavior (PHBS), the percentage of children under five receiving exclusive breastfeeding, and the percentage of toddler health services, which are obtained from Bali Provincial Health Office. The results showed SEM method produced smaller AIC value and higher R², with R² and AIC values of 96.24% and 60.84, respectively.

Keywords: Malnourished Toddler, Spatial Effect, SEM, SAR

1. PENDAHULUAN

Salah satu permasalahan yang dihadapi terkait status gizi yaitu gizi buruk. Gizi buruk merupakan suatu kondisi kurangnya nutrisi pada tubuh atau nutrisinya di bawah standar. Gizi buruk dapat menimpa semua kelompok umur di masyarakat, tetapi yang perlu diperhatikan adalah kelompok bayi dan balita. Hal tersebut karena usia ini merupakan masa tumbuh kembang yang optimal (golden period) sehingga apabila terjadi gangguan pada usia ini, tidak dapat dicukupi pada masa berikutnya dan dapat berpengaruh negatif pada kualitas generasi penerus (Profil Kesehatan Provinsi Bali, 2019).

Masalah gizi pada kelompok balita masih menjadi masalah serius di berbagai kabupaten/kota di Indonesia. Kekurangan gizi pada balita dapat menyebabkan penurunan tingkat kecerdasan pada anak. Hal tersebut menyebabkan menurunnya kualitas sumber daya manusia, yang berakibat berkurangnya potensi kalangan muda yang sangat dibutuhkan dalam pembangunan bangsa.

Berdasarkan data yang diperoleh dari Dinas Kesehatan Provinsi Bali, kasus gizi buruk pada balita di Bali tahun 2018 sebanyak 111 kasus, mengalami peningkatan dari tahun sebelumnya, sebanyak 106 kasus.

ISSN: 2303-1751

Provinsi Bali memiliki 9 kabupaten yang secara geografis memiliki karakteristik yang berbeda, sehingga peneliti menduga ada kemungkinan bahwa kasus balita gizi buruk di Provinsi Bali dipengaruhi oleh letak geografis atau lokasi pengamatan karena kondisi wilayah satu tidak sama dengan kondisi wilayah lainnya. Mencermati hal ini, model angka gizi buruk pada balita di Provinsi Bali dibuat dengan menggunakan metode regresi spasial yang merupakan pengembangan dari metode analisis regresi linier, di mana aspek lokasi juga diperhatikan.

Berdasarkan kelinearan data, model regresi dikelompokkan menjadi dua, yaitu regresi linear dan nonlinear. Apabila aspek keruangan juga diperhatikan, maka model regresi yang digunakan adalah regresi spasial. Pemodelan spasial dapat dibedakan menjadi pemodelan dengan pendekatan titik yang meliputi

²Program Studi Matematika, Fakultas MIPA – Universitas Udayana [Email: gedesukarsa@unud.ac.id]

³Program Studi Matematika, Fakultas MIPA – Universitas Udayana [Email: suciptawati@unud.ac.id]

⁴Program Studi Matematika, Fakultas MIPA – Universitas Udayana [Email : <u>i.putu.enk@unud.ac.id</u>]

Geographically Weighted Regression (GWR), Geographically Weighted Poisson Regression (GWPR), dan Generalized Space-Time Autoregressvie (GSTAR) dan pemodelan dengan pendekatan area yang meliputi Spatial Autoregressive Model (SAR), Spatial Error Model (SEM), Spatial Durbin Model (SDM), Spatial Autoregressive Moving Average (SARMA), dan panel data.

SAR adalah model regresi spasial yang mengasumsikan variabel terikat pada suatu wilayah dipengaruhi oleh variabel terikat di wilayah lainnya dalam model (terdapat korelasi spasial pada variabel terikat). Sedangkan SEM mengasumsikan bahwa pada *error* model suatu wilayah dengan wilayah lainnya terdapat korelasi spasial (LeSage & Pace, 2009).

Metode regresi spasial pernah digunakan oleh Jayanti, et al. (2017) untuk memodelkan kasus Demam Berdarah *Dengue* (DBD) di Kota Denpasar. Hasil penelitian tersebut menunjukkan bahwa variabel yang berpengaruh signifikan terhadap DBD adalah faktor ketetanggan antardaerah, persentase luas wilayah, dan persentase peran jumantik pada setiap desa/kelurahan, serta nilai R^2 pada model SAR sebesar 54,9% dan AIC sebesar 166,35.

Model persamaan regresi berganda secara umum dapat dituliskan sebagai berikut (Draper & Smith, 1998):

 $Y_i = \beta_0 + \beta_1 X_{1i} + \dots + \beta_k X_{ki} + \varepsilon_i$ (1) dengan : Y_i merupakan nilai pengamatan variabel terikat; $\beta_0, \beta_1, \beta_2, \dots, \beta_k$ merupakan koefisien regresi; X_1, X_2, \dots, X_k merupakan nilai pengamatan variabel bebas; ε_i merupakan nilai galat/error regresi dengan asumsi $\varepsilon_i \sim IIND(0, \sigma^2)$; $i = 1, 2, 3, \dots, n$.

Matriks pembobot spasial merupakan matriks yang menggambarkan kedekatan hubungan antar lokasi. Bentuk umum dari matriks pembobot spasial yaitu :

$$\mathbf{W} = \begin{pmatrix} w_{11} & w_{12} & \dots & w_{1n} \\ w_{21} & w_{22} & \dots & w_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ w_{n1} & w_{n2} & \dots & w_{nn} \end{pmatrix}$$

Matriks tersebut akan distandarisasi dengan rumus (LeSage & Pace, 2009):

rumus (LeSage & Pace, 2009):
$$w_{ij}^* = \frac{w_{ij}}{\sum_{j=1}^n w_{ij}}$$
(2)

dimana W merupakan matriks pembobot spasial, w_{ij} merupakan elemen baris ke -i kolom ke -i matriks pembobot spasial.

Menurut LeSage & Pace (2009), matriks pembobot spasial tipe area terdiri dari *rook*

contiguity, double rook contiguity, linear contiguity, double linear contiguity, bishop contiguity, dan queen contiguity. Matriks pembobot yang digunakan dalam penelitian ini adalah queen contiguity.

Regresi spasial merupakan salah satu metode statistika yang digunakan untuk mengetahui hubungan antara variabel dependen dan variabel independen dengan mempertimbangkan ketergantungan spasial. Secara umum, model persamaan regresi spasial dinyatakan sebagai berikut (Anselin, et al., 2004):

$$y = \rho W y + X \beta + u$$

$$u = \lambda W u + \varepsilon$$

$$\varepsilon \sim N(0, \sigma^2 I)$$
(3)

Spatial Autoregressive Model (SAR) disebut juga dengan Spatial Lag Model (SLM) (Anselin, et al., 2004). Apabila nilai $\rho \neq 0$ dan $\lambda = 0$, maka model tersebut merupakan model SAR. Adapun model persamaannya vaitu:

$$y = \rho W y + X \beta + \varepsilon$$
 (4)
dimana y adalah variabel respon, X adalah
matriks variabel penjelas, W adalah matriks
pembobot spasial, ε merupakan vektor error
dengan varian konstan σ^2 , β adalah vektor
koefisien parameter regresi, ρ adalah koefisien
autoregresi lag spasial, dan λ merupakan
koefisien autoregresi galat spasial.

Apabila nilai $\rho = 0 \ dan \ \lambda \neq 0$, maka model tersebut merupakan model SEM. model regresi spasialnya menjadi :

$$y = X\beta + u$$

$$u = \lambda W u + \varepsilon$$

$$\varepsilon = (I - \lambda W)(y - X\beta)$$
(5)

Tujuan dari penelitian ini yaitu untuk mengetahui model regresi spasial dan factor – factor yang memengaruhi angka gizi buruk pada balita di Provinsi Bali.

2. METODE PENELITIAN

2.1 Jenis dan Sumber Data

Data yang digunakan yaitu data sekunder yang diperoleh dari Dinas Kesehatan Provinsi Bali. Unit pengamatan yang digunakan adalah seluruh kabupaten/kota yang ada di provinsi Bali.

2.2 Variabel Penelitian

Penelitian ini menggunakan dua jenis variabel yaitu variabel respon dan variabel prediktor. Variabel respon yang digunakan

ISSN: 2303-1751

yaitu jumlah kasus gizi buruk pada balita sedangkan variabel prediktor yang digunakan yaitu persentase balita usia 6-59 bulan yang mendapat vitamin A (X_1) , persentase bayi dengan Berat Badan Lahir Rendah (BBLR) (X_2) , persentase rumah tangga ber-PHBS (X_3) , persentase balita mendapatkan ASI eksklusif (X_4) , dan persentase pelayanan kesehatan balita (X_5) .

2.3 Teknik Analisis Data

Teknik analisis yang digunakan pada penelitian ini setelah melalui proses pengumpulan data yaitu sebagai berikut.

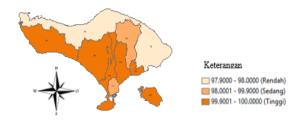
- 1. Membentuk peta tematik untuk melihat penyebaran masing masing variabel
- 2. Melakukan Uji *Moran's I* untuk masing masing variabel
- 3. Melakukan Uji Lagrange Multiplier (LM)
- 4. Membentuk Matriks Pembobot Spasial
- 5. Melakukan pemodelan Spatial Autoregressive Model (SAR) dan Spatial Error Model (SEM)
- 6. Membandingkan model SAR dan SEM dengan melakukan pemilihan model terbaik menggunakan nilai AIC minimum dan atau R^2 terbesar.
- 7. Melakukan interpretasi model terbaik yang diperoleh

3. PEMBAHASAN

3.1 Deskripsi Data

Berikut ini merupakan penyebaran dari setiap variabel yang digambarkan melalui peta tematik.

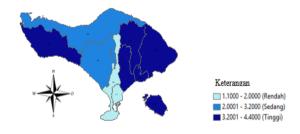
3.1.1 Jumlah Kasus Balita Gizi Buruk di Provinsi Bali



Gambar 1. Peta Penyebaran Kasus Balita Gizi Buruk di Provinsi Bali Tahun 2018

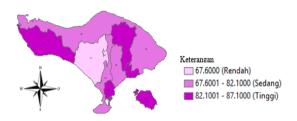
Jumlah kasus terbanyak yaitu sebesar 29 kasus yang terjadi pada kabupaten Buleleng, sedangkan kasus terendah sebanyak 2 kasus yaitu pada kota Denpasar. Warna yang semakin

gelap pada peta tematik mengindikasikan jumlah kasus balita gizi buruk yang semakin banyak. Sebaliknya, warna yang semakin terang mengindikasikan jumlah kasus balita gizi buruk yang semakin sedikit.


3.1.2 Persentase Balita Usia 6 – 59 Bulan yang Mendapat Vitamin A

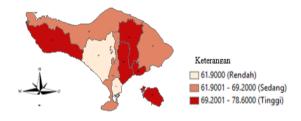
Gambar 2 Persentase Balita Usia 6 – 59 Bulan yang Mendapat Vitamin A di Provinsi Bali Tahun 2018

Warna semakin vang gelap mengindikasikan persentase balita usia 6 – 59 bulan yang mendapat vitamin A yang semakin banyak, sedangkan warna yang semakin terang mengindikasikan persentase balita usia 6 – 59 bulan yang mendapat vitamin A yang semakin rendah. persentase balita usia 6 – 59 bulan yang mendapat vitamin A tertinggi sebesar 100 persen yaitu pada kabupaten Jembrana, Tabanan, Badung, Klungkung dan persentase balita usia 6 – 59 bulan yang mendapat vitamin A terendah sebesar 97,90 persen pada Kabupaten Karangasem.


3.1.3 Persentase Bayi dengan Berat Badan Lahir Rendah (BBLR)

Gambar 3 Persentase Bayi dengan Berat Badan Lahir Rendah (BBLR) di Provinsi Bali Tahun 2018

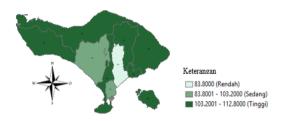
Warna yang semakin gelap mengindikasikan bahwa persentase bayi dengan Berat Badan Lahir Rendah (BBLR) semakin tinggi dan warna yang semakin terang mengindikasikan bahwa persentase bayi dengan Berat Badan Lahir Rendah (BBLR) semakin rendah. Persentase yang tertinggi yaitu sebesar 4,4 persen pada Kabupaten Klungkung, sedangkan persentase terendah yaitu sebesar 1,1 persen kasus pada Kota Denpasar. Kabupaten Badung dan Denpasar memiliki persentase kasus BBLR yang rendah. Hal ini berarti, secara kinerja, Kabupaten Badung dan Denpasar telah mampu untuk menghindari BBLR.


3.1.4 Persentase Rumah Tangga Ber-PHBS

Gambar 4. Persentase Rumah Tangga Ber – PHBS di provinsi Bali Tahun 2018

Warna yang semakin gelap mengindikasikan bahwa persentase rumah tangga ber – PHBS semakin tinggi, sedangkan warna yang semakin terang mengindikasikan persentase rumah tangga ber – PHBS yang semakin rendah. Persentase rumah tangga ber – PHBS di Provinsi Bali tahun 2018 tertinggi yaitu sebesar 87,1 persen pada Kabupaten Klungkung dan terendah sebesar 67,6 persen pada Kabupaten Tabanan.

3.1.5 Persentase Balita Mendapat ASI Eksklusif



Gambar 5 Persentase Balita Mendapat ASI Eksklusif di Provinsi Bali tahun 2018

Warna yang semakin gelap mengindikasikan persentase balita mendapat ASI eksklusif semakin tinggi, sedangkan warna yang semakin terang memngindikasikan bahwa persentase balita mendapat ASI eksklusif semakin rendah. Pada tahun 2018, persentase balita mendapat ASI eksklusif tertinggi sebesar 78,6 persen pada Kabupaten Gianyar dan

terendah sebesar 61,9 persen pada Kabupaten Tabanan dan Kota Denpasar. Kota Denpasar termasuk salah satu kabupaten/kota yang maju namun memiliki persentase ASI eksklusif terendah. Hal ini diduga karena ibu – ibu di wilayah Denpasar cenderung merupakan seorang pekerja.

3.1.6 Persentase Pelayanan Kesehatan Balita

Gambar 6 Persentase Pelayanan Kesehatan Balita di Provinsi Bali tahun 2018

Pada tahun 2018, persentase pelayanan kesehatan balita tertinggi yaitu sebesar 112,8 persen pada Kabupaten Klungkung dan Buleleng sedangkan persentase terendah yaitu sebesar 83,8 pada Kabupaten Gianyar. Semakin gelap warna pada peta mengindikasikan bahwa persentase pelayanan kesehatan balita yang semakin tinggi, dan sebaliknya.

Berdasarkan peta tematik di atas, dapat dibuat rangkuman seperti pada Tabel 3.1 berikut.

Tabel 1. Peringkat Setiap Kabupaten

KAB	Ranking					
KAD	Y_i	X_{1i}	X_{2i}	X_{3i}	X_{4i}	X_{5i}
JBR	4	1	2	2	2	5
TBN	6	2	6	9	8	7
BDG	7	3	8	5	7	6
GNR	3	5	4	8	1	9
KLK	5	4	1	1	4	2
BLI	8	7	5	3	3	4
KRG	2	9	3	6	5	3
BLL	1	8	7	7	6	1
DPS	9	6	9	4	9	8

Sumber: Data diolah (2020)

3.2 Uji Kebergantungan Spasial

Uji yang digunakan untuk mengetahui ada tidaknya ketergantungan spasial antarlokasi adalah uji *Moran's I* dan Uji *Lagrange Multiplier*.

Tabel 2. Uji Autokorelasi dengan *Moran's I*

Uji		Moran's I	Value	Prob.	
Moran's (error)	Ι	-0,166	0,247	0,805	
$Z_{0,025} = 1,96$					
E(I) = -0.125					

Sumber: Data diolah (2020)

Tabel 3. Nilai Moran's I untuk Setiap Variabel

Variabel	Keterangan	Moran's I			
ln Y	Jumlah Balita gizi buruk	-0,105			
<i>X</i> ₁	Persentase balita usia 6 – 59 bulan yang mendapat vitamin A	0,024			
<i>X</i> ₂	Persentase bayi dengan Berat Badan Lahir Rendah (BBLR)	0,175			
X_3	Persentase rumah tangga ber-PHBS	-0,287			
X_4	Persentase balita mendapat ASI eksklusif	-0,122			
X ₅ Persentase Pelayanan Kesehatan Balita 0,09		0,095			
	$I_0 = -0.125$ $\alpha = 0.05$				

Sumber: Data diolah (2020)

Tabel 4. Hasil Uji Lagrange Multiplier

Uji Kebergantungan Spasial	Value	Prob.	Keputusan	
Lagrange Multiplier (lag)	5,596	0,018	Tolak H ₀	
Lagrange Multiplier (error)	5,197	0,023	Tolak H ₀	
$\alpha = 0.05$				

Sumber: Data diolah (2020)

Berdasarkan hasil pada Tabel 4.4 diperoleh nilai p-value untuk Lagrange Multiplier (lag) dan Lagrange Multiplier (error) kurang dari $\alpha=0.05$ sehingga tolak H_0 , yang berarti terdapat ketergantungan spasial pada lag dan juga pada error. Oleh karena itu, analisis dilanjutkan ke pemodelan menggunakan SAR dan SEM.

3.3 Matriks Pembobot Spasial

Metode yang digunakan dalam pembentukan matriks pembobot spasial yaitu *Queen Contiguity*. Berikut merupakan matriks ketetanggaan untuk unit pengamatan kabupaten di Provinsi Bali.

$$W = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

ISSN: 2303-1751

Matriks di atas kemudian distandarisasi diperoleh matriks pembobot spasial sebagai berikut.

$$W^* = \begin{pmatrix} 0 & 0.5 & 0 & 0 & 0 & 0 & 0 & 0.5 & 0 \\ 0.33 & 0 & 0.33 & 0 & 0 & 0 & 0 & 0.33 & 0 \\ 0 & 0.2 & 0 & 0.2 & 0 & 0.2 & 0 & 0.2 & 0.2 & 0.2 \\ 0 & 0 & 0.25 & 0 & 0.25 & 0.25 & 0 & 0 & 0.25 \\ 0 & 0 & 0 & 0.33 & 0 & 0.33 & 0.33 & 0 & 0 \\ 0 & 0 & 0.2 & 0.2 & 0.2 & 0 & 0.2 & 0.2 & 0 \\ 0 & 0 & 0 & 0 & 0.33 & 0.33 & 0 & 0.33 & 0 \\ 0.2 & 0.2 & 0.2 & 0 & 0 & 0.2 & 0.2 & 0 & 0 \\ 0 & 0 & 0.5 & 0.5 & 0.5 & 0.2 & 0.2 & 0.2 & 0 & 0 \\ 0 & 0 & 0.5 & 0.5 & 0.5 & 0.2 & 0.2 & 0.2 & 0 & 0 \\ 0 & 0 & 0.5 & 0.5 & 0.5 & 0.2 & 0.2 & 0.2 & 0 & 0 \\ 0 & 0 & 0.5 & 0.5 & 0.5 & 0.2 & 0.2 & 0.2 & 0 & 0 \\ 0 & 0 & 0.5 & 0.5 & 0.5 & 0.2 & 0.2 & 0.2 & 0 & 0 \\ 0 & 0 & 0.5 & 0.5 & 0.5 & 0.2 & 0.2 & 0.2 & 0 & 0 \\ 0 & 0 & 0.5 & 0.5 & 0.5 & 0.5 & 0.2 & 0.2 & 0.2 & 0 & 0 \\ 0 & 0 & 0.5 & 0.5 & 0.5 & 0.5 & 0.2 & 0.2 & 0.2 & 0.2 & 0 \\ 0 & 0 & 0.5 & 0.5 & 0.5 & 0.5 & 0.2 & 0.2 & 0.2 & 0.2 & 0 \\ 0 & 0 & 0.5 & 0.5 & 0.5 & 0.5 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 \\ 0 & 0 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 \\ 0 & 0 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.2 & 0.2 & 0.2 & 0.2 \\ 0 & 0 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.2 & 0.2 & 0.2 & 0.2 \\ 0 & 0 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.2 & 0.2 & 0.2 & 0.2 \\ 0 & 0 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.2 & 0.2 & 0.2 & 0.2 \\ 0 & 0 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 \\ 0 & 0 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.2 & 0.2 & 0.2 & 0.2 \\ 0 & 0 & 0.5 & 0.5 & 0.5 & 0.5 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 \\ 0 & 0 & 0.5 & 0.5 & 0.5 & 0.5 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 \\ 0 & 0 & 0.5 & 0.5 & 0.5 & 0.5 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 \\ 0 & 0 & 0.5 & 0.5 & 0.5 & 0.5 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 \\ 0 & 0 & 0.5 & 0.5 & 0.5 & 0.5 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 \\ 0 & 0 & 0.5 & 0.5 & 0.5 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 \\ 0 & 0 & 0.5 & 0.5 & 0.5 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 \\ 0 & 0 & 0.5 & 0.5 & 0.5 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 \\ 0 & 0 & 0.5 & 0.5 & 0.5 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 \\ 0 & 0 & 0.5 & 0.5 & 0.5 & 0.2 & 0.2 & 0.2 & 0.2 \\ 0 & 0 & 0.5 & 0.5 & 0.5 & 0.2 & 0.2 & 0.2 \\ 0 & 0 & 0.5 &$$

3.4 Pembentukan Model Penuh SAR

Analisis seanjutnya yaitu menduga parameter berdasarkan metode *maximum likelihood*.

Tabel 5. Pendugaan Parameter SAR

Para- meter	Estimasi Parameter	Standard Error	Wald	p value		
ho	-0,509	0,445	-1,144	0,253		
eta_0	607,463	191,679	3,169	0,002		
eta_1	-6,166	1,875	-3,288	0,001		
eta_2	1,384	2,933	0,472	0,637		
β_3	-0,372	0,401	-0,928	0,353		
eta_4	0,520	0,558	0,933	0,351		
β_5	0,132	0,237	0,559	0,576		
$\alpha = 0.05$						
$R_{\alpha}^2 = 76,21\%$						
AIC = 65,11						

Sumber: Data diolah (2020)

Model SAR yang diperoleh yaitu : $\hat{y}_i = -0.509 \boldsymbol{W} \hat{y}_j + 607.463 - 6.166 X_{1i} + 1.384 X_{2i} - 0.372 X_{3i} + 0.520 X_{4i} + 0.132 X_{5i}$ (6)

Dapat dilihat bahwa dalam model penuh SAR, terdapat satu variabel yang signifikan yaitu X_1 . Namun, tidak menutup kemungkinan terdapat variabel lain yang signifikan jika dilakukan pembentukan model parsial SAR.

3.5 Pembentukan Model Parsial SAR

Analisis dilanjutkan dengan membentuk model parsial SAR kemudian melihat nilai AIC terkecil dari semua kemungkinan model yang terbentuk.

Tabel 6. Nilai AIC dan R² dari Semua Kemungkinan Model

No	Variabel Bebas	R^2	AIC		
1	X_1	51,59%	63,083		
2	X_2	32,77%	66,376		
3	X_3	6,22%	68,954		
4	X_4	11,78%	68,423		
5	X_5	14,31%	68,509		
6	X_1 dan X_2	74,09%	60,085		
7	X_1 dan X_3	51,91%	65,011		
8	X_1 dan X_4	66,82%	61,696		
9	X_1 dan X_5	51,49%	65,079		
10	X_2 dan X_3	34,88%	68,046		
11	X_2 dan X_4	36,33%	68,090		
12	X_2 dan X_5	42,99%	67,567		
13	X_3 dan X_4	21,81%	69,290		
14	X_3 dan X_5	52,38%	69,754		
15	X_4 dan X_5	23,37%	69,559		
16	X_1, X_2 dan X_3	74,32%	61,975		
17	X_1, X_2 dan X_4	74,03%	61,992		
18	X_1, X_2 dan X_5	74,16%	62,084		
19	X_1, X_3 dan X_4	73%	61,772		
20	X_1 , X_3 dan X_5	52,03%	67,008		
21	X_1 , X_4 dan X_5	66,73%	63,649		
22	X_2, X_3 dan X_4	35,95%	70,006		
23	X_2, X_3 dan X_5	50,46%	68,573		
24	X_2, X_4 dan X_5	45,55%	69,362		
25	X_3 , X_4 dan X_5	47,41%	68,597		
26	X_1, X_2, X_3 dan X_4	74,82%	63,391		
27	X_1, X_2, X_3 dan X_5	74,87%	63,935		
28	X_1, X_2, X_4 dan X_5	74,05%	63,992		
29	X_1, X_3, X_4 dan X_5	75,13%	63,315		
30	X_2, X_3, X_4 dan X_5	50,66%	70,333		
G 1	umbar: Data dialah (2020)				

Sumber: Data diolah (2020)

Diperoleh bahwa model dengan nilai AIC terkecil yaitu model ke -6 dengan nilai AIC sebesar 60,085 dan R^2 sebesar 74,09%. Meskipun model ke -6 bukan model dengan nilai R^2 terbesar, namun hanya dengan menggunakan dua variabel bebas mampu menghasilkan nilai R^2 yang tidak berbeda jauh dengan model yang memiliki nilai R^2 terbesar. Oleh karena itu, model terbaik yang dipilih yaitu model ke -6, dengan variabel bebas yang digunakan yaitu X_1 dan X_2 . Selanjutnya dilakukan pemodelan SAR dengan variabel bebas X_1 dan X_2 .

Model terbaik yang diperoleh yaitu:

$$\hat{y}_i = -0.589 \mathbf{W} \hat{y}_j + 626.984 -6.224 X_{1i} +3.815 X_{2i}$$
(7)

Tabel 7. Pemodelan SAR dengan Variabel X_1 dan X_2

Para- meter	Estimasi Parameter	Standard Error	Wald	p value		
ρ	-0,589	0,355	-1,658	0,097		
β_0	626,984	167,525	3,743	0,000		
eta_1	-6,224	1,677	-3,711	0,000		
eta_2	3,815	1,449	2,632	0,008		
$\alpha = 0.05$						
$R_{\alpha}^2 = 74,09\%$						
	AIC = 60,085					

Sumber: Data diolah (2020)

3.6 Pembentukan Model Penuh SEM

Analisis selanjutnya yaitu melakukan pendugaan parameter SEM.

Tabel 8. Pendugaan Parameter SEM

Para- meter	Estimasi Parameter	Standard Error	Wald	p value		
λ	-1,495	0,141	-10,592	0,000		
eta_0	977,465	239,140	4,087	0,000		
eta_1	-8,751	2,168	-4,037	0,000		
eta_2	3,127	2,201	1,421	0,155		
β_3	-1,138	0,418	-2,723	0,006		
β_4	0,315	0,581	0,542	0,588		
eta_5	-0,333	0,212	-1,568	0,117		
$\alpha = 0.05$						
$R_{\alpha}^2 = 91,42\%$						
	A	IC = 62.45	•			

Sumber: Data diolah (2020)

Model SEM yang diperoleh yaitu: $\hat{y}_i = -1,495 \mathbf{W} \hat{y}_j + 977,465 - 8,751 X_{1i}$ $+3,127 X_{2i} - 1,138 X_{3i} + 0,315 X_{4i}$ $-0,333 X_{5i}$ (8)

Pada model penuh SEM diperoleh dua variabel bebas yang signifikan. Akan tetapi, tidak menutup kemungkinan terdapat variabel bebas lainnya yang signifikan jika dilakukan pembentukan model parsial SEM.

3.7 Pembentukan Model Parsial SEM

Selanjutnya akan dilakukan pembentukan model parsial SEM dan melihat nilai AIC terkecil dari semua kemungkinan model yang terbentuk. Diperoleh bahwa model dengan nilai R^2 terbesar yaitu model ke – 27 dengan nilai R^2 sebesar 96,24% dan AIC sebesar 60,837. Meskipun model ke – 27 bukan model dengan nilai AIC terkecil, namun hanya dengan

menggunakan empat variabel bebas mampu menghasilkan nilai AIC yang tidak berbeda jauh dengan model yang memiliki nilai AIC terkecil. Oleh karena itu, model terbaik yang dipilih yaitu model ke -27, dengan variabel bebas yang digunakan yaitu X_1, X_2, X_3 , dan X_5 . Selanjutnya dilakukan pemodelan SEM dengan variabel bebas X_1, X_2, X_3 , dan X_5 .

Tabel 9. Nilai AIC dan R² dari Semua Kemungkinan Model

No	Variabel Bebas	R^2	AIC
1	X_1	58,57%	60,372
2	X_2	34,96%	64,189
3	X_3	6,24%	66,957
4	X_4	10,68%	66,490
5	X_5	36,04%	63,704
6	X_1 dan X_2	70,06%	59,334
7	X_1 dan X_3	62,78%	61,930
8	X_1 dan X_4	64,51%	60,187
9	X_1 dan X_5	60,18%	62,316
10	X_2 dan X_3	46,61%	65,212
11	X_2 dan X_4	41,89%	64,395
12	X_2 dan X_5	53,65%	64,199
13	X_3 dan X_4	21,96%	67,283
14	X_3 dan X_5	40,12%	65,469
15	X_4 dan X_5	44,10%	65,293
16	$X_1, X_2 \operatorname{dan} X_3$	69,80%	59,153
17	$X_1, X_2 \operatorname{dan} X_4$	70,44%	61,332
18	$X_1, X_2 \operatorname{dan} X_5$	70,16%	60,977
19	X_1, X_3 dan X_4	68,18%	58,854
20	X_1, X_3 dan X_5	65,13%	63,762
21	$X_1, X_4 \operatorname{dan} X_5$	64,97%	61,999
22	X_2, X_3 dan X_4	44,74%	66,332
23	X_2, X_3 dan X_5	56,92%	64,973
24	X_2, X_4 dan X_5	43,41%	65,548
25	X_3, X_4 dan X_5	60,35%	65,398
26	$X_1, X_2, X_3 \operatorname{dan} X_4$	55,88%	60,480
27	$X_1, X_2, X_3 \operatorname{dan} X_5$	96,24%	60,837
28	$X_1, X_2, X_4 \operatorname{dan} X_5$	69,85%	62,973
29	$X_1, X_3, X_4 \text{ dan } X_5$	58,93%	60,789
30	$X_2, X_3, X_4 \text{ dan } X_5$	56,24%	66,965

Sumber: Data diolah (2020)

Tabel 10. Pemodelan SEM dengan Variabel X_1, X_2, X_3 , dan X_5

Para- meter	Estimasi Parameter	Standard Error	Wald	p value		
λ	-2,252	0,008	-270,31	0,000		
β_0	919,691	177,801	5,173	0,000		
eta_1	-8,123	1,585	-5,124	0,000		
eta_2	3,858	0,643	5,996	0,000		
β_3	-0,982	0,141	-6,969	0,000		
β_5	-0,306	0,145	-2,107	0,035		
$\alpha = 0.05$						
$R_{\alpha}^2 = 96,24\%$						
	AIC = 60.837					

Sumber: Data diolah (2020)

Model terbaik yang diperoleh yaitu:

$$\hat{y}_i = -2,252W\hat{y}_j + 919,691 - 8,123X_{1i} + 3,858X_{2i} - 0,982X_{3i} - 0,306X_{5i}$$
(9)

3.8 Perbandingan Model SAR dan SEM

Tabel 11. Ukuran Kebaikan Model SAR dan SEM

No.	Model	AIC	R^2
1	SAR	60,085	74,09%
2	SEM	60,837	96,24%

Sumber: Data diolah (2020)

Diperoleh bahwa model dengan R^2 terbesar yaitu model SEM. Meskipun nilai AIC dari model SEM bukan yang terkecil, namun nilai AIC dari model SEM tidak berbeda jauh dengan model lainnya. Oleh karena itu, model terbaik yang dipilih untuk memodelkan kasus balita gizi buruk di Provinsi Bali adalah model SEM dengan AIC sebesar 60,837 dan R^2 sebesar 96,24%. Nilai R^2 sebesar 96,24% menunjukkan bahwa variabel - variabel bebas yang digunakan mampu menjelaskan variabel terikat sebesar 96,24% dan sisanya yaitu sebesar 3,76% dijelaskan oleh variabel lain diluar model.

3.9 Matriks Spatial Error

Hasil kali **W** dengan vektor residual, disebut juga sebagai *spatial error*, merepresentasikan rataan residual pada wilayah yang didefinisikan sebagai tetangga pada matriks **W**. Lebih jelasnya, *spatial error* untuk 9 kabupaten/kota di Provinsi Bali pada tahun 2018 adalah sebagai berikut:

$$\begin{pmatrix} JBR \\ TBN \\ BDG \\ GNR \\ KLK \\ BLI \\ KRG \\ BLL \\ DPS \end{pmatrix} = \begin{pmatrix} 0.0,5 & 0 & 0 & 0 & 0 & 0 & 0,5 & 0 \\ 0.33 & 0 & 0,33 & 0 & 0 & 0 & 0 & 0,33 & 0 \\ 0 & 0,2 & 0 & 0,2 & 0 & 0,2 & 0 & 0,2 & 0,2 \\ 0 & 0 & 0,25 & 0 & 0,25 & 0,25 & 0 & 0 & 0,25 \\ 0 & 0 & 0 & 0,33 & 0 & 0,33 & 0,33 & 0 & 0 & 0 \\ 0 & 0 & 0,2 & 0,2 & 0,2 & 0 & 0,2 & 0,2 & 0 \\ 0 & 0 & 0 & 0 & 0,33 & 0,33 & 0 & 0,33 & 0 \\ 0 & 0 & 0,2 & 0,2 & 0,2 & 0 & 0,2 & 0,2 & 0 \\ 0,2 & 0,2 & 0,2 & 0 & 0 & 0,2 & 0,2 & 0 & 0 \\ 0,2 & 0,2 & 0,5 & 0 & 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1,197 \\ -0,0111 \\ -2,761 \\ 2,779 \\ 0,075 \\ 0,783 \\ 0,199 \\ 0,046 \end{pmatrix}$$

Jika dilihat perbandingan antara vektor *spatial error* dan vektor residual yang sebenarnya, diperoleh bahwa terdapat 3 kabupaten yang memiliki selisih yang positif yaitu **BDG**, **KLK**, **dan BLI**. Sedangkan kabupaten/kota lainnya memiliki selisih yang negatif. Nilai *spatial*

error yang positif mengindikasikan bahwa kabupaten tersebut mendapat 'keuntungan' dari tetangganya dalam membentuk angka gizi buruk pada balita, sedangkan nilai yang negative mengindikasikan bahwa kabupaten tersebut 'mendukung' tetangganya atau membawa pengaruh bagi tetangganya.

3.10 Interpretasi Koefisien Model Terbaik

Model regresi yang diperoleh adalah model SEM dengan persamaan :

 $\hat{y}_i = -2,252 \mathbf{W} \hat{y}_j + 919,691 - 8,123 X_{1i} + 3,858 X_{2i} - 0,982 X_{3i} - 0,306 X_{5i}$

Berikut merupakan interpretasi dari model SEM yang diperoleh.

- 1. Koefisien lambda (λ) signifikan pada taraf kepercayaan 5% artinya terdapat keterkaitan antara kasus balita gizi buruk pada suatu wilayah dengan wilayah lainnya yang berdekatan.
- 2. Koefisien $\hat{\beta}_1 = -8,123$ menunjukkan bahwa kenaikan persentase balita usia 6 59 bulan yang mendapat vitamin A sebesar satu satuan, maka dapat menurunkan jumlah kasus balita gizi buruk sebesar 8,123 satuan apabila faktor lain dianggap konstan
- 3. Koefisien $\hat{\beta}_2 = 3,858$ menunjukkan bahwa kenaikan persentase bayi dengan Berat Badan Lahir Rendah (BBLR) sebesar satu satuan, maka dapat meningkatkan jumlah kasus balita gizi buruk sebesar 3,858 satuan apabila faktor lain dianggap konstan.
- 4. Koefisien $\hat{\beta}_3 = -0.982$ menunjukkan bahwa kenaikan persentase rumah tangga ber-PHBS sebesar satu satuan, maka dapat menurunkan jumlah kasus balita gizi buruk sebesar 0,982 satuan apabila faktor lain dianggap konstan.
- 5. Koefisien $\hat{\beta}_5 = -0.306$ menunjukkan bahwa kenaikan persentase pelayanan kesehatan balita sebesar satu satuan, maka dapat menurunkan jumlah kasus balita gizi buruk sebesar 0,306 satuan apabila faktor lain dianggap konstan.

4. SIMPULAN DAN SARAN

4.1 Simpulan

Berdasarkan penjelasan di atas diperoleh bahwa terdapat ketergantungan spasial pada *lag* dan juga pada *error*. Oleh karena itu, dilakukan pemodelan *Spatial Autoregressive Model* (SAR) dan *Spatial Error* Model (SEM) kemudian dilakukan perbandingan antara model – model yang diperoleh. Model terbaik yang diperoleh adalah model SEM dengan AIC sebesar 60,837 dan R^2 sebesar 96,24%. Adapun faktor – faktor yang berpengaruh signifikan terhadap kasus balita gizi buruk yaitu persentase balita usia 6 – 59 bulan yang mendapat vitamin A, persentase bayi dengan Berat Badan Lahir Rendah (BBLR), persentase rumah tangga ber-PHBS, dan persentase pelayanan kesehatan balita.

4.2 Saran

Berdasarkan penjelasan yang telah diuraikan di atas, saran untuk penelitian selanjutnya diharapkan mempertimbangkan data time series sehingga dapat dianalisis menggunakan data panel spasial pemerintah diharapkan mampu meningkatkan persentase balita usia 6 - 59 bulan yang mendapat vitamin A, mengurangi persentase bayi dengan Berat Badan Lahir Rendah (BBLR), meningkatkan persentase rumah tangga ber-PHBS, dan juga meningkatkan cakupan pelayanan kesehatan balita.

DAFTAR PUSTAKA

- Anselin, L., Rey, S. J. & Florax, R. J., 2004. Advances in Spatial Econometrics. Heidelberg: Springer.
- Draper, N. R. & Smith, H., 1998. Applied Regression Analysis: Third Edition. Canada: John Wiley & Sons, Inc.
- Jayanti, S., Sumarjaya, I. W. & Susilawati, M., 2017. Pemodelan Penyebaran Kasus Demam Berdarah Dengue (DBD) di Kota Denpasar dengan Metode Spatial Autoregressive (SAR). *E-Jurnal Matematika*, 6(1), pp. 37 46.
- Kemenkes, 2017. Buku Saku Pemantauan Status Gizi Tahun 2017. Jakarta: Kementerian Kesehatan Republik Indonesia.
- LeSage, J. & Pace, R. K., 2009. *Introduction to Spatial Econometrics*. New York: CRC Press.
- Profil Kesehatan Provinsi Bali, 2019. *Profil Kesehatan Provinsi Bali*. s.l.:Dinas

 Kesehatan Provinsi Bali.