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ABSTRACT 

In this article, we review the deterministic and perturbed Von Bertalanffy model that has been 
developing to discuss the existence and uniqueness results of the model. The key research issues 

are highlighted, and the results and interpretations are summarized. We investigate the effects of 

changing some of the system's control parameters through numerical simulations. We resolve the 

Von Bertalanffy ordinary differential equation of fractional order. The analytical solution is 

obtained. 
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1. INTRODUCTION  

In 1838, Von Bertalanffy presented the Von 

Bertalanffy model as an organism growth 

model. This model demonstrates how the 

tumor's volume changes in relation to the surface 

area and with cell death. This model, in Vaidya's 

opinion, accurately forecasts the progression of 

human tumors (Vaidya (1982)). The Von 

Bertalanffy ordinary differential equation is 

written as follows: 

𝑑𝑣

𝑑𝑡
= 𝐾 (𝐿∞ − 𝑣)                   (1) 

where t is time, v is length (or some other 

measure of size), K is the growth rate and 𝐿∞, 

termed 'L infinity' in fisheries science, is the 

asymptotic length at which growth is zero. 

The solution, for a given initial condition 

𝑣(0) = 𝑣0, is: 

𝑣(𝑡) =  𝐿∞ − (𝐿∞ − 𝑣0)𝑒−𝐾𝑡                  (2) 

 

Eq. (1) presents a sigmoidal curve for 𝑣(𝑡) and 

can model human's height and mass, a fish 

community, a rabbit (see Zwietering (1990); 

Waliszewski (2003) and references therein), 

diverse malicious tumors (Laird (1964); Laird 

(1965)). For processing biological systems and 

researching ecology, the traditional Von 

Bertalanffy system is helpful. 

 

Research has been done to convert 

deterministic growth models to their stochastic 

counterparts because deterministic models are in 

fact insufficient to explain the dynamical 

process of population expansion (Shabana 

(2019) and references therein). Researchers 

have expanded the Von Bertalanffy model in 

numerous investigations (Lee (2020); Garcia 

(1983); Konig (2019)). On the other hand, the 

only models that have been extended to their 

stochastic counterpart to date are the logistic and 

Gompertz models (Shabana (2019) and 

references therein); Al-Saffar (2017); Al-Saffar 

(2020)). 

By changing the most important parameters 

that reflect the presence of noisy behavior, 

deterministic models can be converted into their 

stochastic equivalent. The intrinsic growth rate 

parameter K is perturbed so that the 

mathematical model in the form of stochastic 

Von Bertalanffy emerge. 

A modulation in the model parameters is 

examined using fractional derivatives. The 

fractional operators are increasingly taken into 

account in biological system modeling due to its 

interesting advantages in analyzing complex 

evolution and behaviour patterns linked to 

memory or fractals. (Wang (2009); Ahmed 

(2007); Kilicman (2018); Ishak (2022); Ishak 
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(2023)). There have been many revisions and 

modifications of the Von Bertalanffy equation 

(1) discussed, but it is difficult to see a fractional 

version of this differential equation.  

The system in Eq. (1) has one steady state 

𝑣∗ =  𝐿∞. 𝑣 can represent the population of any 

species of interest (e.g. tumor, rabbit, bacteria, 

etc). For a constant 𝐾 > 0, 𝑣 reaches 𝐿∞ as 𝑡 →
 ∞ regardless of the initial value of 𝑣(𝑡 = 0) =
𝑣0. Finding the numerical and analytical answer 

to Equation (1) is convenient. One intriguing 

feature of the Von Bertalanffy equation is that 

the population will display an equilibrium 

solution at 𝑣 = 𝐿∞, as we can see from Fig. (1) 

which is a constant, unchanging point in time. 

As a result, the population will stop growing, 

unlike how it would if K or v were 0. This 

illustrates that the partial derivative with respect 

to time is equal to zero for a variety of initial 

conditions. 
𝜕𝑣

𝜕𝑡
= 0. 

For the model in (2), where 𝑣0 is the initial 

value of 𝑣 at (𝑡 = 0). We show the typical time 

history of 𝑣(𝑡) for different values of 𝜔 and 𝑣0 

in Fig. (1). 

 
For 𝐿∞ = 1, 𝑣0 = 0.1, the upper panel from 

figure (1), it is obvious that the solution show a 

stable grow at 𝐿∞ = 1 for different values of the 

parameter growth K with only a difference 

which is the time that the system spent as an 

initial transient, also, this indicates that for 

higher values of K, the length (or any other size-

measure) of the organism will reach the 

asymptotic length faster which leads the 

population to stop expanding early. Whereas in 
the lower panel where we fix the value of K and 

change the initial condition, we observe a similar 

behaviour. 

2. VON BERTALANFFY MODEL WITH 

A PERIODIC MODEULATION 

Different growth populations have been 

frequently modeled using deterministic Von 

Bertalanffy models. By modulating the growth 

rate parameter K, the Von Bertalanffy equation 

with periodic modulation is formed as follows: 
𝑑𝑣

𝑑𝑡
= (𝛼 + 𝛽 𝑐𝑜𝑠 𝜔 𝑡) (𝐿∞ − 𝑣)                   (3) 

In the case of a periodic fluctuation (𝛼 +
𝛽 cos(𝜔𝑡)) is included in the growth rate 

parameter, where 𝛼 is a constant growth, 𝛽 and 

𝜔 are the amplitude and frequency of the 

modulation, respectively. The analytical 

solution to Eq. (3) can be found in the following 

form: 

𝑣(𝑡) =  𝐿∞ − (𝐿∞ − 𝑣0)𝑒−𝛼𝑡−
𝛽

𝜔
 𝑠𝑖𝑛(𝜔 𝑡)       (4) 

 

where 𝑣0 represents v’s initial value at 𝑡 = 0. 

The perturbed model is appropriate for 

providing study of the growth of populations and 

expansion. 

 

3. PRELIMINARIES 

We present these preliminary results in order to 

explore the presence and uniqueness of the 

initial value solution for the the following 

fractional representation of the Von Bertalanffy 

differential equation has been taken into 

consideration. 

𝑐𝐷𝑝𝑣(𝑡) = (𝛼 + 𝛽 𝑐𝑜𝑠(𝜔 𝑡)) (𝐿∞ − 𝑣)   (5) 

with 𝑝 ∈ (0,1) and 𝐷𝑝 represents the Caputo 

fractional derivative, with 𝑣(0) = 0, Where 
𝑐𝐷𝑝 , denotes the Caputo differential operator 

of order 𝑝, 0 < 𝑝 < 1, 𝛼, 𝛽, 𝜔, 𝐿∞ are 

parameters, 𝑡 ∈ [0, 𝑇]. Let's review some 

fundamental definitions of fractional calculus 

that will be useful for this study. 

Definition 3.1. (Agarwal, (2011) 

The Caputo derivative of fractional order 𝑝 is 

defined as follows for a continuous function 

𝑔: [0, ∞)  →  ℛ: 

𝑐𝐷𝑝(𝑡) =  
1

Γ(𝑛 − 𝑝)
∫ (𝑡

𝑡

0

− 𝑠)𝑛−𝑝−1 𝑔𝑛(𝑠)𝑑𝑠, 
𝑛 − 1 < 𝑝 < 𝑛, 𝑛 = [𝑝] + 1, where the integer 

component of the real number 𝑝 is denoted by 

[𝑝]. 
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Definition 3.2. (Ishak, (2020)) The Riemann-

Liouville fractional integral of order 𝑝 is defined 

by 

𝐼𝑝𝑓(𝑡) =
1

Γ(𝑝)
∫ (𝑡 − 𝑠)𝑝−1𝑓(𝑠)𝑑𝑠,    𝑝 > 0

𝑡

0

 

 

assuming the integral is available. 

 

Theorem 3.1.   (Ishak, (2020)).     

Assuming that 𝑥 is a Banach space, Ω is an 

open bounded subset of 𝑥 with 𝜃 ∈  Ω, and 

𝑇: Ω ̅  → 𝑥  is a fully continuous operator, then 

the following conditions hold: 

||𝑇𝑢|| ≤ ||𝑢||,      ∀ 𝑢 ∈  𝜕Ω 

Then 𝑇 has a fixed point in Ω.   □ 

 

Lemma 3.1. (Ahmad (2011)) 

For p > 0, the universal solution of the fractional 

differential equation is 𝑐𝐷𝑝𝑣(𝑡) = 0, is 

donated by:  

𝑣(𝑡) = 𝑐0 + 𝑐1𝑡 +  ⋯ +  𝑐𝑛−1𝑡𝑛−1 

where 𝑐𝑖 ∈  ℛ, 𝑖 = 1, 2, ⋯ 𝑛 − 1, 𝑛 = [𝑝] + 1. 

□ 

The following can be derived from lemma (3.1): 

𝐼𝑝𝑐𝐷𝑝𝑣(𝑡) = 𝑣(𝑡) + 𝑐0 + 𝑐1𝑡 + 𝑐2𝑡2 +  ⋯
+  𝑐𝑛−1𝑡𝑛−1 

for some 𝑐𝑖 ∈  ℛ, 𝑖 = 1, 2, ⋯ 𝑛 − 1. 

Rewrite the problem (5) as: 

𝑣(𝑡) =
1

Γ(𝑝)
∫ (𝑡 − 𝑠)𝑝−1𝜚(𝑡, 𝑣(𝑡))𝑑𝑠,    𝑣(0)

𝑡

0

= 0 

where  

𝜚(𝑡, 𝑣(𝑡)) = (𝛼 + 𝛽 𝑐𝑜𝑠(𝜔 𝑡)) (𝐿∞ − 𝑣), and  

𝜚(𝛼, 𝛽, 𝜔, 𝑡, 𝐿∞, 𝑣(𝑡)) = (𝛼 +

                                      𝛽 𝑐𝑜𝑠(𝜔 𝑡)) (𝐿∞ − 𝑣)  

 
4. EXISTENCE RESULTS 

Let Θ = 𝐶([0, 𝑇], ℛ) stands for the Banach 

space of all continuous functions from [0, 𝑇] →
 ℛ endowed with the norm defined by: 

||𝑣|| = sup|𝑣(𝑡)| , 𝑡 ∈ [0, 𝑇] 

Define an operator Π: Θ →  Θ as: 

(Π𝑣)(𝑡) =
1

Γ(𝑝)
∫ (𝑡 − 𝑠)𝑝−1𝜚(𝑠, 𝑣(𝑠))𝑑𝑠,

𝑡

0

 

Observe that the operator Π must have a fixed 

point in order for the equation in (5) to have a 

solution. 

Lemma 4.1. 

The operator Π: Θ →  Θ is completely 

continuous. 

Proof.  Let 𝐴 ⊂  Θ  be bounded, then ∀ 𝑡 ∈
[0, 𝑇], 𝑣 ∈ 𝐴, there exists a positive constants 

𝜉1, 𝜉2 such that |𝑣(𝑡)| ≤  𝜉1 and | cos(𝜔 𝑠)|  ≤
 𝜉2, thus, we have:  

|(Π 𝑣)(𝑡)| ≤  
1

Γ(𝑝)
∫ (𝑡 − 𝑠)𝑝−1

𝑡

0

|𝛼

+ 𝛽 cos(𝜔𝑡))(𝐿∞ − 𝑣)|𝑑𝑠 

≤
1

Γ(𝑝)
∫ (𝑡 − 𝑠)𝑝−1

𝑡

0

(|𝛼𝐿∞| − 𝛼|𝑣(𝑠)|

+ 𝛽𝐿∞ cos(𝜔𝑠) |

− 𝛽| cos(𝜔𝑠)||𝑣(𝑠)|) 𝑑𝑠 

≤
𝛼𝐿∞ − 𝛼𝜉1 + 𝛽𝐿∞𝜉2 − 𝛽𝜉1𝜉2

Γ(𝑝)
∫ (𝑡

𝑡

0

− 𝑠)𝑝−1 𝑑𝑠 

≤
(𝛼𝐿∞ − 𝛼𝜉1 + 𝛽𝐿∞𝜉2 − 𝛽𝜉1𝜉2𝑡𝑝

Γ(𝑝 + 1)
 

This suggests that |(Π 𝑣)(𝑡)| is limited, 

furthermore, for  𝑡1, 𝑡2  ∈ [0, 𝑇], we have  

|(Π𝑣)(𝑡2) − (Π𝑣)(𝑡1)|

≤
1

Γ(𝑝)
∫ (𝑡2

𝑡2

0

− 𝑠)𝑝−1|𝜚(𝑠, 𝑣(𝑠))|𝑑𝑠

−
1

Γ(𝑝)
∫ (𝑡1

𝑡1

0

− 𝑠)𝑝−1|𝜚(𝑠, 𝑣(𝑠))|𝑑𝑠 

≤
𝛼𝐿∞ − 𝛼𝜉1 + 𝛽𝐿∞𝜉2 − 𝛽𝜉1𝜉2

Γ(𝑝)
[∫ (𝑡2

𝑡2

0

− 𝑠)𝑝−1𝑑𝑠

− ∫ (𝑡1 − 𝑠)𝑝−1𝑑𝑠
𝑡1

0

] 

≤
(𝛼𝐿∞ − 𝛼𝜉1 + 𝛽𝐿∞𝜉2 − 𝛽𝜉1𝜉2)(𝑡2

𝑝 − 𝑡1
𝑝)

Γ(𝑝 + 1)
 

The Ascoli-Arzela theorem states that Π: Θ →
 Θ is entirely continuous since the right-hand side 

of the inequality above goes to zero regardless of  

𝑣 ∈  Θ   as  𝑡2  →  𝑡1. 

Theorem 4.1.   

Let  

𝜚(𝛼, 𝛽, 𝜔, 𝑡, 𝐿∞, 𝑣(𝑡)): [0, ∞] × [0, ∞]  × [0, ∞]

× [0, 𝑇] × [0, ∞] × ℛ →  ℛ 

and  

lim
𝑣→0

𝜚(𝛼, 𝛽, 𝜔, 𝑡, 𝐿∞, 𝑣(𝑡))

𝑣
= 0 

then problem (5) has at least one solution. 
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Proof. Since 

lim
𝑣→0

𝜚(𝛼, 𝛽, 𝜔, 𝑡, 𝐿∞, 𝑣(𝑡))

𝑣
= 0 

then there exists a constant 𝜖 > 0 such that 

|𝜚(𝛼, 𝛽, 𝜔, 𝑡, 𝐿∞, 𝑣(𝑡))| ≤  𝜇|𝑣| for 0 < |𝑣| <

 𝜖 where 𝜇 > 0 and  

𝑡𝑝

Γ(𝑝 + 1)
𝜇 ≤ 1 

Define 𝐵 = 𝑣 ∈  Θ: ||𝑣|| < 𝜖 and take 𝑣 ∈  Θ 

such that ||𝑣|| ⊂ 𝜖 that is 𝑣 ∈  𝜕𝐵 by Lemma 

(4.1), we know that Π is completely continuous 

and  

(Π𝑣)(𝑡)

≤
1

Γ(𝑝)
∫ (𝑡 − 𝑠)

𝑡

0

|𝜚(𝛼, 𝛽, 𝜔, 𝑠, 𝐿∞, 𝑣(𝑡))|𝑑𝑠| 

≤
𝜇||𝑣||

Γ(𝑝)
∫ (𝑡 − 𝑠)𝑝−1𝑑𝑠

𝑡

0

 

≤
𝜇||𝑣||𝑡𝑝

Γ(𝑝 + 1)
≤ ||𝑣|| 

Thus we have ||Π𝑣(𝑡)|| ≤ ||𝑣||, 𝑣 ∈  𝜕𝐵, Since 

the operator Π has at least one fixed point 

according to theorem (3.1), it follows that the 

problem (5) has at least one solution. 

Theorem 4.2.  Assume that 

𝜚(𝛼, 𝛽, 𝜔, 𝑡, 𝐿∞, 𝑣(𝑡)): [0, ∞] × [0, ∞]  × [0, ∞]

× [0, 𝑇] × [0, ∞] × ℛ →  ℛ 

is jointly continuous function satisfying the 

following condition: 

 ||𝜚(𝛼, 𝛽, 𝜔, 𝑡, 𝐿∞, 𝑣(𝑡)) −

 𝜚(𝛼, 𝛽, 𝜔, 𝑡, 𝐿∞, 𝑦(𝑡))|| ≤ 𝐿||𝑣 − 𝑦||, 

∀ 𝑡 ∈ [0, 𝑇], 𝛼 ∈ [0, ∞], 𝛽 ∈ [0, ∞], 𝜔
∈ [0, ∞], 𝐿∞ ∈ [0, ∞], 𝑣, 𝑦 
∈ ℛ 

With 

𝐿 ≤
0.5Γ(𝑝 + 1)

𝑡𝑝  

then problem (5) has a unique solution. 

Proof. Setting 

𝑠𝑢𝑝⏟
𝑡∈[0,𝑇],𝛼∈[0,∞],𝛽∈[0,∞],𝜔∈[0,∞],𝐿∞∈[0,∞]

𝜚(𝛼, 𝛽, 𝜔, 𝑡, 𝐿∞, 0)

= 𝑀 

and selecting  

𝑟 ≥
2𝑡𝑝𝑀

Γ(𝑝 + 1)
 

 

we show that Π𝐵𝑟  ⊂ 𝐵𝑟 where 𝐵𝑟 = 𝑣 ∈

𝐶[0, 𝑇]: ||𝑣|| ≤ 𝑟, for 𝑣 ∈ 𝐵, we have: 

|(Π𝑣)(𝑡)|

≤ max [∫
(𝑡 − 𝑠)𝑝−1

Γ(𝑝)

𝑡

0

|𝜚(𝛼, 𝛽, 𝜔, 𝑠, 𝐿∞, 𝑣(𝑠))|𝑑𝑠]  

≤  max [
1

Γ(𝑝)
∫ (𝑡

𝑡

0

− 𝑠)𝑝−1 |𝜚(𝛼, 𝛽, 𝜔, 𝑠, 𝐿∞, 𝑣(𝑠))

− 𝜚(𝛼, 𝛽, 𝜔, 𝑠, 𝐿∞, 0) + 𝜚(𝛼, 𝛽, 𝜔, 𝑠, 𝐿∞, 0)|𝑑𝑠]  

≤  
1

Γ(𝑝)
∫ (𝑡 − 𝑠)𝑝−1

𝑡

0

|𝜚(𝛼, 𝛽, 𝜔, 𝑠, 𝐿∞, 𝑣(𝑠))

− 𝜚(𝛼, 𝛽, 𝜔, 𝑠, 𝐿∞, 0)|𝑑𝑠

+
1

Γ(𝑝)
∫ (𝑡 − 𝑠)𝑝−1

𝑡

0

|𝜚(𝛼, 𝛽, 𝜔, 𝑠, 𝐿∞, 0)| 𝑑𝑠]  

≤
𝐿𝑟𝑡𝑝

Γ(𝑝 + 1)
+

𝑀𝑡𝑝

Γ(𝑝 + 1)
≤

𝑡𝑝(𝐿𝑟 + 𝑀)

Γ(𝑝 + 1)
≤ 𝑟 

 

For 𝑣, 𝑦 ∈ (𝐶[0, 1], ℛ) and for 𝑡 ∈ [0, 𝑇], we 

obtain: 

||(Π𝑣)(𝑡) − (Π𝑦)(𝑡)||

≤ max [∫
(𝑡 − 𝑠)𝑝−1

Γ(𝑝)

𝑡

0

|𝜚(𝛼, 𝛽, 𝜔, 𝑠, 𝐿∞, 𝑣(𝑠))

− 𝜚(𝛼, 𝛽, 𝜔, 𝑠, 𝐿∞, 𝑦(𝑠))|𝑑𝑠] 

≤
𝐿||𝑣 − 𝑦||𝑡𝑝

Γ(𝑝 + 1)
≤ 𝐵||𝑣 − 𝑦|| 

Where  

𝐵 =
𝐿𝑡𝑝

Γ(𝑝 + 1)
 

As 𝐵 < 1, Π is contraction. Thus, the contraction 

mapping principle leads to the theorem's 

conclusion. 

5. CONCLUSION 

       This article's goal is to examine the 

dynamics of the deterministic, stochastic, and 

fractional Von Bertalanffy model in order to 

ascertain how changing parameter values impact 

population behavior. The impacts of various 

beginning conditions and K are taken into 

consideration. After an initial transient, the 

model continues to behave in the same way 

throughout time. This indicates that if the length 
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growth rate of organisms rises, the length (or any 

other size-measure) of the organism will reach 

the asymptotic length more quickly, which will 

cause the population to cease increasing early. 

We demonstrated the existence of the solution 

and its uniqueness using the Banach's fixed point 

theorem after solving the fractional Von 

Bertalanffy differential equation with periodic 

modulation.  

The Von Bertalanffy deterministic model has 

been extended to stochastic setting by perturbing 

the growth rate parameter K to include (𝛼 +
𝛽 𝑐𝑜𝑠 𝜔 𝑡).  

It will be interesting to investigate different 

models using similar methods in the future. 
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