Pemanfaatan Simulasi Jaringan Komunikasi Vehicle-to-Everything (V2X) untuk Sistem Transportasi Cerdas: Literature Review
Abstract
The increasing number of vehicles has led to several complex challenges, such as traffic congestion, air pollution, and safety driving issues. These challenges also result in economic losses. Fortunately, with the advance in technologies today, we can utilize Intelligent Transportation Systems (ITS) to establish a system that is more efficient, safer, and environmentally friendly. Specifically, the concept of Vehicle-to-Everything (V2X) has emerged as a potential solution to address various road-related challenges. However, the real-world implementation of V2X still faces numerous obstacles, particularly in terms of cost and safety concerns. Deploying V2X on a large scale requires significant investments due to the need for communication infrastructure and hardware development. Therefore, simulation can serve as an initial solution to tackle these challenges. Simulations make it possible to set up different communication network protocols and architectures and to model different traffic conditions without the risks that come with testing in the real world. In this review paper, we aim to give a clearer insight into the trends, challenges, and opportunities of V2X simulations in various traffic environments.
Downloads
References
[2] A. Rahman H, ‘Pemborosan BBM Dampak Macet di Indonesia Capai 2,2 Juta Liter per Hari’, Feb. 2023.
[3] M. M. Saad, M. T. R. Khan, S. H. A. Shah, and D. Kim, ‘Advancements in Vehicular Communication Technologies: C-V2X and NR-V2X Comparison’, IEEE Communications Magazine, vol. 59, no. 8, pp. 107–113, Aug. 2021, doi: 10.1109/MCOM.101.2100119.
[4] K. C. Dey, A. Rayamajhi, M. Chowdhury, P. Bhavsar, and J. Martin, ‘Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) Communication in a Heterogeneous Wireless Network-Performance Evaluation’, Transp Res Part C Emerg Technol, vol. 68, pp. 168–184, Jul. 2016, doi: 10.1016/j.trc.2016.03.00.
[5] N. I. Er, K. D. Singh, C. Couturier, and J. M. Bonnin, ‘Towards a simple and efficient vehicular delay tolerant networks routing protocol for data collection in smart cities’, Telkomnika (Telecommunication Computing Electronics and Control), vol. 22, no. 1, pp. 65–75, 2024, doi: 10.12928/telkomnika.v22i1.24801.
[6] N. H. Hussein, C. T. Yaw, S. P. Koh, S. K. Tiong, and K. H. Chong, ‘A Comprehensive Survey on Vehicular Networking: Communications, Applications, Challenges, and Upcoming Research Directions’, IEEE Access, vol. 10, pp. 86127–86180, Aug. 2022, doi: 10.1109/ACCESS.2022.3198656.
[7] S. Küfeoğlu, Emerging Technologies Value Creation for Sustainable Development. Springer, 2022. doi: https://doi.org/10.1007/978-3-031-07127-0.
[8] T. Huang et al., ‘V2X Cooperative Perception for Autonomous Driving: Recent Advances and Challenges’, Oct. 2023, [Online]. Available: https://doi.org/10.48550/arXiv.2310.03525.
[9] A. Alnasser, H. Sun, and J. Jiang, ‘Cyber Security Challenges and Solutions for V2X Communications: A Survey’, vol. 151, pp. 52–67, Jan. 2019, doi: 10.1016/j.comnet.2018.12.018.
[10] G. Liu et al., ‘Towards Collaborative Autonomous Driving: Simulation Platform and End-to-End System’, pp. 1–22, Apr. 2024, [Online]. Available: https://doi.org/10.48550/arXiv.2404.09496.
[11] T. Ormándi, ‘Practical Manual of SUMO/MATLAB/VEINS/INET/OMNET++ Programming and Interfacing for V2X Simulation with Standard Protocols’, Saint Raphael, Sep. 2021. Accessed: Dec. 19, 2024. [Online]. Available: https://kjit.bme.hu
[12] N. T. Tangirala, C. Sommer, and A. Knoll, ‘Simulating Data Flows of Very Large Scale Intelligent Transportation Systems’, in ACM International Conference Proceeding Series, Association for Computing Machinery, Jun. 2024, pp. 98–107. doi: 10.1145/3615979.3656062.
[13] D. Naudts et al., ‘Vehicular Communication Management Framework: A Flexible Hybrid Connectivity Platform for CCAM Services’, Future Internet, vol. 13, no. 81, pp. 1–17, Mar. 2021, doi: 10.3390/fi13030081.
[14] S. Subiyanto, N. A. Salim, S. K. Rachmat, and M. F. Ekaputra, “Optimization of Electric Bus Scheduling Using Genetic Algorithm: A Case Study in Public Transport of UNNES Campus Area,” Majalah Ilmiah Teknologi Elektro, vol. 23, no. 1, p. 9, Aug. 2024, doi: 10.24843/mite.2024.v23i01.p02.
[15] C. T. Wu, S. H. Wang, and C. H. Tu, ‘A Simulation Framework for Prototyping Intelligent Vehicle-to-Infrastructure Applications: A Case Study on RSU-Based Intersection Movement Assist for Connected Autonomous Vehicles’, IEEE Access, vol. 12, pp. 82584–82598, 2024, doi: 10.1109/ACCESS.2024.3411070.
[16] J. Li et al., ‘Learning for Vehicle-to-Vehicle Cooperative Perception under Lossy Communication’, IEEE Transactions on Intelligent Vehicles, vol. 8, no. 4, pp. 1–9, Dec. 2023, doi: 10.1109/TIV.2023.3260040.
[17] T. Alladi, V. Chamola, N. Sahu, V. Venkatesh, A. Goyal, and M. Guizani, ‘A Comprehensive Survey on the Applications of Blockchain for Securing Vehicular Networks’, IEEE Communications Surveys and Tutorials, vol. 24, no. 2, pp. 1212–1239, 2022, doi: 10.1109/COMST.2022.3160925.
[18] Pamudi, ‘Penerapan Sistem Dinamik Dalam Sistem Transportasi Cerdas Untuk Mengurangi Kemacetan, Polusi Dan Meningkatkan Keselamatan Berlalu Lintas (Study Kasus Dinas Perhubungan Kota Surabaya)’, 2018.
[19] S. Masood et al., ‘Detecting and Preventing False Nodes and Messages in Vehicular Ad-Hoc Networking (VANET)’, IEEE Access, vol. 11, pp. 93920–93934, Aug. 2023, doi: 10.1109/ACCESS.2023.3308035.
[20] M. Hasan, S. Mohan, T. Shimizu, and H. Lu, ‘Securing Vehicle-to-Everything (V2X) Communication Platforms’, IEEE Transactions on Intelligent Vehicles, vol. 5, no. 4, pp. 693–713, Dec. 2020, doi: 10.1109/TIV.2020.2987430.
[21] V. G. Stepanyants and A. Y. Romanov, ‘Influence of Realistic Perception and Surroundings on Qualitative Results in Automated and Connected Vehicle Simulation’, IEEE Access, vol. 12, pp. 43721–43733, Mar. 2024, doi: 10.1109/ACCESS.2024.3380369.
[22] N. Liu, M. Liu, J. Cao, G. Chen, and W. Lou, ‘When Transportation Meets Communication: V2P over VANETs’, in IEEE 30th International Conference on Distributed Computing Systems, 2010, pp. 567–576. doi: 10.1109/icdcs.2010.83.
[23] Q. Cui et al., ‘Vehicular Mobility Patterns and Their Applications to Internet-of-Vehicles: a Comprehensive Survey’, Science China Information Sciences, vol. 65, no. 11, pp. 1–42, Nov. 2022, doi: 10.1007/s11432-021-3487-x.
[24] A. P. Garcia, M. A. L. Carmona, and P. M. Redondo, ‘Optimized Design of Low Emission Zones in SUMO: A Dual Focus on Emissions Reduction and Travel Time Improvement’, in SUMO User Conference 2024, Madrid, May 2024, pp. 1–23. doi: 10.13140/RG.2.2.17909.38883.
[25] I. A. Aljabry and G. A. Al-Suhail, ‘A Survey on Network Simulators for Vehicular Ad-hoc Networks (VANETS)’, Int J Comput Appl, vol. 174, no. 11, pp. 1–9, Jan. 2021, doi: 10.5120/ijca2021920979.
[26] P. Heckelmann and S. Rinderknecht, ‘Influence of an Automated Vehicle with Predictive Longitudinal Control on Mixed Urban Traffic Using SUMO’, World Electric Vehicle Journal, vol. 15, no. 10, Oct. 2024, doi: 10.3390/wevj15100448.
[27] A. Schaffland, J. Nelson, and J. Schöning, ‘Simulating Traffic Networks: Driving SUMO Towards Digital Twins’, in SUMO Conference Proceedings, TIB Open Publishing, Jul. 2024, pp. 113–125. doi: 10.52825/scp.v5i.1105.
[28] A. Roosta, H. Kaths, M. Barthauer, J. Erdmann, Y.-P. Flötteröd, and M. Behrisch, ‘The State of Bicycle Modeling in SUMO’, in SUMO Conference Proceedings, Germany: TIB Open Publishing, Jun. 2023, pp. 55–64. doi: 10.52825/scp.v4i.215.
[29] A. Dosovitskiy, G. Ros, F. Codevilla, A. López, and V. Koltun, ‘CARLA: An Open Urban Driving Simulator’, in 1st Conference on Robot Learning, 2017, pp. 1–16.
[30] R. G. Moreno, R. Barea, E. L. Guillen, J. Araluce, and L. M. Bergasa, ‘Reinforcement Learning-Based Autonomous Driving at Intersections in CARLA Simulator’, Sensors, vol. 22, no. 21, pp. 1–16, Nov. 2022, doi: 10.3390/s22218373.
[31] S. Malik, M. A. Khan, and H. El-Sayed, ‘CARLA: Car Learning to Act - An Inside Out’, in Procedia Computer Science, Elsevier B.V., 2022, pp. 742–749. doi: 10.1016/j.procs.2021.12.316.
[32] L. M. Marcillo, L. U. Aguiar, M. P. Paredes, and P. B. Bautista, ‘Deployment of OMNET++’, Jul. 17, 2018. doi: 10.20944/preprints201807.0302.v1.
[33] G. Wang, J. Zhang, Y. Zhang, C. Liu, and Z. Chang, ‘Performance Evaluation of Routing Algorithm in Satellite Self-Organizing Network on OMNeT++ Platform’, Electronics (Switzerland), vol. 13, no. 19, pp. 1–16, Oct. 2024, doi: 10.3390/electronics13193963.
[34] D. Irawan and R. Roestam, ‘SIMULASI MODEL JARINGAN MOBILE AD-HOC (MANET) DENGAN NS-3’, Nov. 2016, pp. 1–7.
[35] S. N. Gardiner, ‘V2V Simulators and Related Software’, Dec. 2021. [Online]. Available: https://github.com/V2Xgithub/WiLabV2Xsim.
[36] C. Sommer, ‘Veins The Open Source Vehicular Network Simulation Framework’, Nov. 2021.
[37] D. Cui and Y. Shen, ‘Integration of an Autonomous Driving Simulator into V2X Simulation Framework for Testing Connected Vehicles’, MOSDIM World, no. 3946, pp. 1–11, 2023.
[38] R. Protzmann, K. Schrab, M. Schweppenhäuser, and I. Radusch, ‘Implementation of a Perception Module for Smart Mobility Applications in Eclipse MOSAIC’, in SUMO Conference Proceedings, TIB Open Publishing, Sep. 2022, pp. 199–214. doi: 10.52825/scp.v3i.123.
[39] J. S. Weber, M. Neves, and T. Ferreto, ‘VANET Simulators: An Updated Review’, Journal of the Brazilian Computer Society, vol. 27, no. 8, pp. 1–31, Dec. 2021, doi: 10.1186/s13173-021-00113-x.
[40] K. Schrab et al., ‘Modeling an ITS Management Solution for Mixed Highway Traffic with Eclipse MOSAIC’, IEEE Transactions on Intelligent Transportation Systems, vol. 24, no. 6, pp. 6575–6585, Jun. 2023, doi: 10.1109/tits.2022.3204174.
[41] S. Y. Niewerth, R. Häbel, and B. Friedrich, ‘Developing a Comprehensive Large-Scale Co-Simulation for Replication of Automated Driving in Urban Traffic Scenarios’, in Transportation Research Procedia, Elsevier B.V., 2024, pp. 522–529. doi: 10.1016/j.trpro.2024.02.065.
[42] M. Won and S. Kim, ‘Simulation Driven Development Process Utilizing Carla Simulator for Autonomous Vehicles’, in Proceedings of the International Conference on Simulation and Modeling Methodologies, Technologies and Applications, Science and Technology Publications, Lda, 2022, pp. 202–209. doi: 10.5220/0011139300003274.
[43] C. M. R. Carletti, C. Casetti, J. Härri, and F. Risso, ‘ms-van3t-CARLA: An Open-Source Co-Simulation Framework for Cooperative Perception Evaluation’, in 19th Wireless On-Demand Network Systems and Services Conference (WONS), Jan. 2024, pp. 93–96. doi: 10.23919/wons60642.2024.10449533.
[44] C. Sommer et al., ‘Veins-The Open Source Vehicular Network Simulation Framework’, Recent Advances in Network Simulation, pp. 215–252, 2019, doi: 10.1007/978-3-030-12842-5_6.
[45] V. Cislaghi, C. Quadri, V. Mancuso, and M. A. Marsan, ‘Simulation of Tele-Operated Driving over 5G Using CARLA and OMNeT++’, in IEEE Vehicular Networking Conference (VNC), Apr. 2023, pp. 81–88. doi: 10.1109/vnc57357.2023.10136340.
[46] M. A. Mohammed, S. M. Shareef, and K. Z. Ghafor, ‘Optimized Routing Algorithm for Vehicular Ad Hoc Networks Based on NS3 Simulator’, Mar. 02, 2023. doi: 10.2139/ssrn.4339951.
[47] C. G. Huélamo et al., ‘Train here, Drive There: ROS Based End-to-End Autonomous-Driving Pipeline Validation in CARLA Simulator Using the NHTSA typology’, Multimed Tools Appl, vol. 81, no. 3, pp. 4213–4240, Jan. 2022, doi: 10.1007/s11042-021-11681-7.
[48] A. Vladyko, P. Plotnikov, and G. Tambovtsev, ‘Simulation System for V2X Applications’, Oct. 09, 2024. doi: 10.20944/preprints202410.0662.v1.
[49] S. Li, T. Azfar, and R. Ke, ‘ChatSUMO: Large Language Model for Automating Traffic Scenario Generation in Simulation of Urban Mobility’, IEEE Transactions on Intelligent Vehicles, pp. 1–12, Aug. 2024, doi: 10.1109/tiv.2024.3508471.
[50] R.-G. Lazăr and C.-F. Căruntu, ‘Comparative Analysis Between 4G LTE and 5G NR: An Evaluation of Cellular Communications For V2X Technology’, Bulletin of the Polytechnic Institute of Iași. Electrical Engineering, Power Engineering, Electronics Section, vol. 69, no. 73, pp. 9–22, Mar. 2023, doi: 10.2478/bipie-2023-0001.
[51] I. Khalid, V. Maglogiannis, D. Naudts, A. Shahid, and I. Moerman, ‘Optimizing Hybrid V2X Communication: An Intelligent Technology Selection Algorithm Using 5G, C-V2X PC5 and DSRC’, Future Internet, vol. 16, no. 107, pp. 1–29, Mar. 2024, doi: 10.3390/fi16040107.
[52] C. Xu, H. Wu, Y. Zhang, S. Dai, H. Liu, and J. Tian, ‘A Real-Time Complex Road AI Perception Based on 5G-V2X for Smart City Security’, Wirel Commun Mob Comput, vol. 2022, pp. 1–11, Jan. 2022, doi: 10.1155/2022/4405242.
[53] R. Q. Malik, K. N. Ramli, Z. H. Kareem, M. I. Habelalmatee, A. H. Abbas, and A. Alamoody, ‘An overview on V2P communication system: Architecture and application’, in 2020 3rd International Conference on Engineering Technology and its Applications, IICETA 2020, Institute of Electrical and Electronics Engineers Inc., Sep. 2020, pp. 174–178. doi: 10.1109/IICETA50496.2020.9318863.
[54] W. M. Jang, ‘The 5G Cellular Downlink V2X Implementation Using V2N With Spatial Modulation’, IEEE Access, vol. 10, pp. 129105–129115, Dec. 2022, doi: 10.1109/ACCESS.2022.3226691.
[55] R. Hasegawa and E. Okamoto, ‘Adaptive Transmission Suspension of V2N Uplink Communication Based on In-Advanced Quality of Service Notification’, Vehicles, vol. 5, no. 1, pp. 203–222, Mar. 2023, doi: 10.3390/vehicles5010012.
[56] V. Mannoni, V. Berg, S. Sesia, and E. Perraud, ‘A Comparison of the V2X Communication Systems: ITS-G5 and C-V2X’, in IEEE 89th Vehicular Technology Conference, Jul. 2019, p. 1. doi: 10.1109/VTCSpring.2019.8746562ï.
[57] M. H. C. Garcia et al., ‘A Tutorial on 5G NR V2X Communications’, IEEE Communications Surveys and Tutorials, vol. 23, no. 3, pp. 1972–2026, Feb. 2021, doi: 10.1109/COMST.2021.3057017.
[58] K. B. Y. Bintoro, S. Permana, A. Syahputra, Yaddarabullah, and B. Arifitama, ‘V2V Communication in Smart Traffic Systems: Current status, challenges and future perspectives’, Jurnal Ilmiah Sistem Informasi, Teknologi Informasi dan Sistem Komputer, vol. 19, no. 1, pp. 21–31, May 2024, doi: 10.33998/processor.2024.19.1.1524.
[59] H. A. Ameen, A. K. Mahamad, S. Saon, D. M. Nor, and K. Ghazi, ‘A Review on Vehicle to Vehicle Communication System Applications’, Indonesian Journal of Electrical Engineering and Computer Science, vol. 18, no. 1, pp. 188–198, Apr. 2020, doi: 10.11591/ijeecs.v18.i1.pp188-198.
[60] P. Mutabazi, ‘What is Vehicle-to-Infrastructure (V2I) Communication?’, Dec. 2022.
[61] M. Gupta, J. Benson, F. Patwa, and R. Sandhu, ‘Secure V2V and V2I Communication in Intelligent Transportation using Cloudlets’, IEEE World Congress on Services, pp. 1–12, Jan. 2020, doi: 10.1109/TSC.2020.3025993.
[62] P. Merdrignac, O. Shagdar, and F. Nashashibi, ‘Fusion of Perception and V2P Communication Systems for Safety of Vulnerable Road Users’, IEEE Transactions on Intelligent Transportation Systems, vol. 18, no. 7, pp. 1740–1751, Jul. 2017, doi: 10.1109/tits.2016.2627014.
[64] A. Flah and C. Mahmoudi, ‘Design and analysis of a novel power management approach, applied on a connected vehicle as V2V, V2B/I, and V2N’, Int J Energy Res, vol. 43, no. 13, pp. 6869–6889, Oct. 2019, doi: 10.1002/er.4701.


This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
This work is licensed under a Creative Commons Attribution 4.0 International License