OWASP Framework and OCTAVE Method for Penetration Testing Web Apps of College X

I Putu Gede Angga Mas Darmayuda^{a1}, Gusti Made Arya Sasmita^{a2}, Gusti Agung Ayu Putri^{a3}

^aDepartement of Information Technology, Faculty of Engineering, Udayana University E-mail: ¹<u>yudadarma88@gmail.com</u>, ²<u>aryasasmita@unud.ac.id</u>, ³<u>agung.ayuputri@unud.ac.id</u>

Abstrak

Keamanan sistem informasi menjadi fokus utama bagi banyak organisasi karena serangan siber yang semakin canggih mengancam kerahasiaan, integritas, dan ketersediaan layanan online. Penelitian ini bertujuan untuk mengidentifikasi dan menilai kerentanan pada aplikasi web di Perguruan Tinggi X dengan menggunakan kerangka kerja OWASP dan metode OCTAVE. OWASP digunakan untuk mengidentifikasi kerentanan web yang umum dan kritis, sementara OCTAVE memberikan pemahaman holistik tentang risiko keamanan organisasi. Pengujian dilakukan dengan alat dan teknik yang direkomendasikan oleh kedua kerangka kerja tersebut. Hasil penelitian menemukan sejumlah kerentanan, termasuk dua dengan tingkat rendah dan satu dengan tingkat tinggi. Temuan ini menggarisbawahi pentingnya pengujian penetrasi sistematis dan penilaian risiko untuk menjaga keamanan aplikasi web di lingkungan pendidikan.

Kata Kunci: Metode OCTAVE, Manajemen Resiko, OWASP, Penetration Testing

Abstract

Information system security is a major focus for many organizations as increasingly sophisticated cyberattacks threaten the confidentiality, integrity and availability of online services. This research aims to identify and assess vulnerabilities in web applications at College X by using the OWASP framework and OCTAVE method. OWASP is used to identify common and critical web vulnerabilities, while OCTAVE provides a holistic understanding of an organization's security risks. Testing was conducted with the tools and techniques recommended by both frameworks. The results found a number of vulnerabilities, including two low-level and one high-level. The findings underscore the importance of systematic penetration testing and risk assessment to keep web applications secure in educational environments.

Keywords: OCTAVE Method, Risk Management, OWASP, Penetration Testing

1. Introduction

This technological advancement has made the internet an essential requirement in every activity carried out by society as a whole, The increasingly advanced digital era allows systems and applications connected to the internet to become potential targets for cyber attacks. Attackers use a variety of methods and techniques to exploit security weaknesses in these systems, which can result in significant losses, such as theft of sensitive data, infrastructure damage, or reputational damage so to protect systems and applications from such attacks, organizations must proactively identify and address existing security weaknesses. [1]. In recent years, many people have become aware of how their information can be used by others and more and more organizations are paying attention to information security risks that can negatively impact and cause financial losses to business processes, organizational reputation, customer trust, and affect relationships with their customers or business partners [2].

Penetration Testing is the process of simulating attacks that are conducted to test the security of a system or application. Penetration Testing is conducted so that organizations can detect potential security weaknesses and take the necessary remedial action before attackers take advantage of them [3].

The Open Web Application Security Project (OWASP) is a global organization focused on web application security. OWASP provides guidance, tools, and other resources that help security professionals identify, prevent, and address security weaknesses in web applications. In

addition, the Operationally Critical Threat, Asset, and Vulnerability Evaluation (OCTAVE) method can be used to holistically analyze and manage security risks in a national education environment [4]. The OCTAVE method helps educational institutions to identify critical assets, recognize existing threats, and analyze possible vulnerabilities. The OCTAVE method is applied so that organizations can take effective actions to reduce security risks and protect sensitive data, systems, and infrastructure used [5].

This research conducted penetration testing on College X Web Apps. Penetration testing using OWASP and OCTAVE methods at College X aims to help College X identify and address security weaknesses in the systems and applications used and by combining these approaches, College X can improve security and protect sensitive data and maintain the smooth running of educational and administrative processes effectively.

2. Research Methodology

Research on Penetration Testing using the OWASP framework and OCTAVE Method on the College X web application is carried out through eight steps, which are described in a flow chart that can be seen in Figure 1 below.

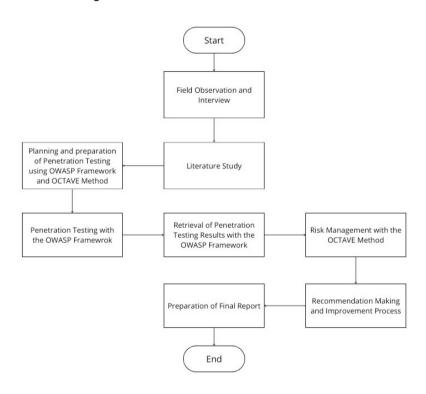


Figure 1. Flow of Research

Figure 1 is a flowchart of an overview of Penetration Testing research on College X Web Apps using the OWASP Framework and OCTAVE Method. The implementation of the stages of making research consists of eight stages, namely field observations and interviews, literature studies, planning and preparation for penetration testing using the OWASP framework and OCTAVE method, penetration testing with the OWASP framework, retrieving penetration testing results with the OWASP framework, risk management with the OCTAVE method, making recommendations and the improvement process and preparing the final report.

3. Literature Study

The ideas and concepts in this research were obtained from a literature review, including scientific journals, research reports, and various books relevant to this topic. These theories support the implementation of this research as well as previous studies related to this topic.

3.1 Information Technology Security

Information security aims to ensure the confidentiality, availability and integrity of all corporate information resources. Information security management includes day-to-day protection called information security management and post-disaster operational preparation known as business continuity management [6]. Information Security occurs because the system that is built is more oriented to the maker so that the result is that the system used is difficult to use or less user friendly for the user, the system is less interactive and less comfortable for the user, the system is difficult to understand the interface of the menu system and the layout does not pay attention to the user's behavior habits, the system is felt to force the user to follow the procedures built so that the system feels rigid and less dynamic, the security of the information system built is not guaranteed [7]. Information security contains several important aspects, such as Confidentiality, Integrity, and Integrity [8].



Figure 2. C.I.A Triad

Figure 2 is the concept of C.I.A Triad from the aspect of information technology security. Seen in the picture consists of three aspects in it, namely confidentiality, integrity, and availability. The explanation of each aspect is as follows.

- 1. Confidentiality, is an aspect that guarantees the confidentiality of data and information stored, sent, and received and ensures that the information can only be accessed by parties who have the rights and authority.
- 2. Integrity, is an aspect of integrity that guarantees the accuracy and integrity of information and ensures that no data changes occur, unless there is a request from parties who have the rights and authority to the data.
- 3. Availability, is an aspect of availability that ensures authorized users can use information when needed and guarantees that data will be available at all times.

3.2 Penetration Testing

Penetration Testing is a method for maintaining data and information security. It involves a series of steps taken to test the security of a system. Penetration Testing includes several stages that involve analyzing the system to find potential security holes, such as system configuration errors, bugs in software or hardware development, and weaknesses in process logic [9]. Penetration Testing is a method of evaluating the security of a computer system or network by simulating attacks from malicious sources and is part of a security audit. Simulated attacks are made like cases that can be made by black hat hackers, crackers, and so on. The goal is to determine and know the kinds of attacks that may be carried out on the system along with the consequences that can occur due to system weaknesses. Penetration Testing also requires intensive analysis for each vulnerability caused by system weaknesses and after all analysis is

completed, it will be documented and provided to the owner along with solutions and impacts that can result from existing security gaps [10].

3.3 Framework OWASP

OWASP (Open Web Application Security Project) is an open community focused on building an organization that aims to develop, purchase, and maintain reliable applications. OWASP supports the view that application security is an issue involving individuals, processes. and technology, because the most effective approach to application security requires improvements in all aspects. Analysis of web application vulnerabilities with the OWASP version 4 method can evaluate the security level of an application [11]. Analysis of web-based application vulnerabilities with OWASP version 4 techniques can determine the security of an application. Based on the results of vulnerability testing on the website using several stages of the category, namely the Authentication Testing Authorization stage, Session Management Testing, Input Validation Testing, and Error Handling in the OWASP version 4 method can be used as a standard for assessing the security of web-based applications [12].

3.4 **OCTAVE Method**

The OCTAVE (Operationally Critical Threat, Asset, and Vulnerability Evaluation) method is an approach developed by the Software Engineering Institute (SEI) in 2001. This method serves as a tool, technique, and procedure for evaluating and planning information system security strategies by identifying risks related to the security of information systems [13]. The OCTAVE method focuses on an organization's essential IT (Information Technology or Information Systems) assets to identify, prioritize, and manage information security risks. OCTAVE comprehensively, systematically, and contextually defines the essential components of information security risk evaluation. Through the use of this method, organizations can make risk-based decisions to protect their information OCTAVE defines key components in a comprehensive, systematic and context-based manner for information security risk evaluation. By using the OCTAVE method. organizations can create protection for information by making risk decisions The OCTAVE criteria require an evaluation to be conducted by an interdisciplinary team consisting of the organization's information technology and business personnel [14].

4. **Result and Discussion**

Results and discussion of Penetration Testing research activities on College X Web Apps using the OWASP Testing Guide Version 4 Framework and recommendations for improvements needed to close security gaps found in the system.

4.1 Implementation using OWASP Testing Guide V4

Implementation, namely Penetration Testing based on the OWASP Testing Guide Version 4 framework. The test results on College X Web Apps using the OWASP Framework are as follows.

Table 1 OWASP Testing Guide V4

Submodul	Objective	Tools	Results
Conduct Search	This submodule aims to find	Self-test in	No vulnerabilities
Engine	accidental or unintentionally	chrome	found
Discovery and	leaked information on the		
Reconnaissance	internet.		
for Information			
Leakage (OTG-			
INFO-001)			
Fingerprint Web	This submodule aims to find	Netcraft	No vulnerabilities
Server (OTG-	potential security flaws that can		found
INFO-002) Review	be exploited by an attacker.	Self-test in	No vulnerabilities
Webserver	This submodule aims to find		found
Metafiles for	and fix potential information leaks that can be exploited by	chrome	lourid
Information	attackers.		
Leakage (OTG-	attackers.		
INFO-003)			
2 230)			

Submodul	Objective	Tools	Results
Enumerate	This submodule aims to count	NMAP	Vulnerabilities
Applications on	the number of web applications		found
Webserver	running on the target web		
(OTG-INFO-	server and find out the ports		
004)	that are open on the website.		
Testingl for	This submodule aims to count	Self-test in	No vulnerabilities
Credentials	the number of web applications	chrome, Burp	found
Transported	running on the target web	Suite	
over an	server and find out the ports		
Encrypted	open on the website.		
Channel (OTG-			
AUTHN-001)			
Testing for	This submodule aims to check	Burp Suite	No vulnerabilities
default	if the application is still using		found
credentials	default credentials that may be		
(OTG-AUTHN-	known to the attacker.		
002)		0.164	
Testing for Weak	This submodule aims to	Self-test in	Vulnerabilities
lock out	evaluate the strength of the	chrome, Burp	found
mechanism	account locking mechanism in	Suite	
(OTG-AUTHN-	the web application.		
003)	This submodule sime to identify	Durn Cuito	Vulnerabilities
Testing for	This submodule aims to identify	Burp Suite	found
Insecure Direct	vulnerabilities where applications provide direct		IOUIIU
Object References	applications provide direct access to objects based on		
(OTG-AUTHZ-	inputs provided by the user.		
004)	inputs provided by the user.		
Testing for	This submodule aims to identify	Burp Suite	No vulnerabilities
Reflected Cross	vulnerabilities where a web	Baip Cano	found
Sites Scripting	application receives data in an		Tourid
(OTG-INPVAL-	HTTP request and includes that		
Ò01)	data in the same HTTP		
,	response in an insecure		
	manner.		
Testing for	This submodule aims to identify	Self-test in	No vulnerabilities
Stored Cross	vulnerabilities where a web	chrome	found
Site Scripting	application receives input from		
(OTG-INPVAL-	a user that may be malicious,		
002)	stores that input in data storage		
	for later use, and then displays		
	that input in an HTTP response		
	without performing proper		
-	filtering.	D 0 "	A1 1
Testing for HTTP	This submodule aims to test	Burp Suite	No vulnerabilities
Verb Tampering	how the web application		found
(OTG-INPVAL-	responds to various HTTP		
003)	methods that access system		
Tacking for UTTO	objects.	Duma Cuita	Ma vode Lille
Testing for HTTP	This submodule aims to	Burp Suite	No vulnerabilities
Parameter	evaluate how the web		found
pollution (OTG-	application responds when it		
INPVAL-004)	receives multiple HTTP parameters with the same		
	parameters with the same name.		
	name.		

Submodul	Objective	Tools	Results	
Testing for SQL	This submodule aims to	Sqlmap, Burp	No vulnerabilities	
Injection (OTG-	evaluate and ensure the	Suite	found	
INPVAL-005)	security of the database from			
•	SQL Injection attacks.			

Table 1 is a detail of the test results on College X Web Apps using OWASP Testing Guide V4. Seen in the table, there are 3 test submodules that successfully found vulnerabilities and 10 test submodules that did not find vulnerabilities in the College X Web Apps.

4.2 Implementation using OCTAVE Method

The OCTAVE method in the context of penetration testing can be interpreted as a framework used to identify and manage information security risks that may affect the system or application being tested. The OCTAVE method has principles and stages that are used in improving the penetration testing process in the following way.

4.2.1 Identification of Assets and Threats

Asset and Threat Identification is the process of identifying potential sources of threats that could jeopardize web application assets. Threats can come from nature or humans, and can be intentional or unintentional. The following is a table of Asset and Threat Identification.

Table 2. Identification of Assets and Threats

Assets	Threat Category	Threat Type
Email dan Password	Authentication	Brute Force
		Sniffing
		Cookie Replay
		Dictionary Attack
		Session Attack
Student Personal Data	dent Personal Data Validation SSI Injection	
(Personal Biodata)		SQL Injection
Student Personal	Validation	Improper validation of file names
Documents		Incorrect file content and size validation
		Missing proper validation of Malicious and
		Unexpected Files
		Insecure Direct Object Reference

Table 2 is a detail of asset identification and possible threats that can occur in College X Web Apps. Judging from the table, there are eleven threats that might be carried out by attackers including Brute Force, Sniffing, Cookie Replay, Dictionary Attack, Session Attack, SSI Injection, SQL Injection, Missing Proper Validation of file name, Missing Proper validation of file content and size, Missing proper validation of Malicious and Unexpected Files and Insecure Direct Object Reference.

4.2.2 Threat and Vulnerability Evaluation

Threat and Vulnerability Evaluation is a process to identify, analyze, and measure risks associated with security in the cyber field. The following is a table of threat and vulnerability evaluations obtained when testing using the OWASP module on College X Web Apps.

Table 3. Threat and Vulnerability Evaluation

Table 5. Threat and Vallerability Evaluation			
Modul		Risk Name/Risk Code	Vulnerability
Testing Information Gathering	for	Enumerate Applications on Webserver/OTG- INFO-004	The attacker can know the number and which websites are hosted on the same server as the target website. This may be misused by the attacker to reach the target website through other websites that have low security on the same server.

Modul	Risk Name/Risk Code	Vulnerability
Authentication Testing	Testing for Weak lock out mechanism/OTG- AUTHN-003	Attackers can find out the weaknesses of security protection on the website such as the absence of a block function when entering the wrong password for more than a few tries. This
Authorization Testing	Testing for Insecure Direct Object References/OTG- AUTHZ-004	can be utilized by attackers to conduct password experiments or use the help of scripts / tools. Attackers can take advantage of the Insecure Direct Object References weakness by modifying the parameters or name of the image file on the website and taking a picture of the image file, so that the attacker can access the file directly.

Table 3 is an evaluation of threats and vulnerabilities that have been identified on the College X website based on testing using the OWASP Testing Guide framework version 4. Seen in the table, 3 vulnerabilities were found that could endanger the system if not handled further.

4.2.3 Risk Mitigation Strategy and Plan Development

The development of risk mitigation strategies and plans in this research is a process that involves identifying, assessing, and managing security risks that may affect the success of a system, network, or application. This process aims to reduce the likelihood of risks and negative impacts that may arise from security vulnerabilities. The following is a table of Risk Mitigation Strategy and Plan Development.

Table 4. Risk Mitigation Strategy and Plan Development

Risk	Risk/Threat	Risk Description	Risk Mitigation Strategy/Plan	
Level	Name	Nisk Description	Development	
Low	Enumerate	Identify the number of	Close open ports that have the	
	Applications on	applications running	potential danger of being attacked by	
	Webserver	on the same domain	attackers.	
	(OTG-INFO-	(Reverse IP Lookup)		
	004)	and open ports.		
Low	Testing for Weak	Identify account	Implement an account lock scheme	
	locked out	locking mechanism	for users who try to log in with the	
	mechanism	vulnerabilities caused	wrong username/password	
	(OTG-AUTHN-	by brute force attacks repeatedly more than a few t		
003)		or password guessing	avoid brute force attack methods on	
	- ·· ·	attacks.	the website.	
High	Testing for	Identify website	Implement the use of a content	
	Insecure Direct	vulnerabilities that	management system CMS (Content	
	Objects a	provide direct access	Management System) or security	
	References	to objects, such as	rules (custom claims) where only authenticated users can access the	
	(OTG-AUTHZ-	database records or files. based on		
	004)	files, based on unverified or	storage). If CMS (Content Management System) is too heavy as	
			a solution, consider using indirection	
			to label unpredictable files or file	
		input.	names.	
			Hairies.	

Table 4 is a table of Strategy Development and Risk Mitigation Plan based on vulnerabilities found in College X Web Apps. Seen in the table there are 2 vulnerabilities at low level and 1 vulnerability at high level. Risk level assessment in this study uses the OWASP Risk Rating Methodology method.

4.2.4 Testing Results After Improvement

The results of testing again after applying the improvement recommendations to the system aim to re-identify the vulnerabilities found in the previous penetration test. After applying

the improvement recommendations, the results of the penetration test this time are expected to have an impact on changes from the findings of vulnerability gaps in the previous penetration test. The test results after improvement on the College X Web Apps can be seen in the following table.

Table 5. Results After Improvement

Risk Name	Before	After	Description
Enumerate Applications on Webserver (OTG-INFO-004)	Low	Note	APPLIED
Testing for Weak locked out	Medium	Note	The Web Apps Manager has closed ports that have the potential to be dangerous APPLIED
mechanism (OTG-AUTHN-003)	Medium	Note	AFFLIED
medianism (010-A011m-000)			The Web Apps Manager has implemented restrictions on excessive login attempts or login spam, so that attackers cannot perform Brute Force attacks on the website.
Testing for Insecure Direct Objects	High	Note	APPLIED
a References (OTG-AUTHZ-004)			The Web Apps Manager has updated the security rules (custom claims) where only authenticated users can access the storage) so that taking pictures on the website cannot be done.

Table 5 is the result of testing again after the implementation of improvement recommendations on the system. After implementing the improvement recommendations, there are several vulnerabilities that are no longer detected.

5. Conclusion

Based on the research that has been carried out, the conclusions that can be drawn regarding the implementation of Penetration Testing using the OWASP Framework and the OCTAVE Method on College X Web Apps are the results of penetration testing using the OWASP Testing Guide version 4 Framework successfully identified a total of 3 vulnerabilities in College X Web Apps and Risk management based on the OCTAVE Method framework in analyzing security risks on College X Web Apps getting analysis results based on OWASP Risk Rating Methodology found 2 vulnerabilities at low level and 1 vulnerability at high level. Based on the results of exposure and discussion with related parties managing Web Apps, there are 3 recommendations for improvements that are suggested to be applied to the College X Web Apps and the recommendations for improvement have been successfully implemented by the college X Web Apps manager.

References

- [1] R. Butarbutar, "Kejahatan Siber Terhadap Individu: Jenis, Analisis, DanPerkembangannya," *Technol. Econ. Law J.*, vol. 2, no. 2, pp. 299–317, 2023, [Online].
- [2] H. L. Alexander Dharmawan, Yani Prihati, "PENETRATION TESTING MENGGUNAKAN OWASP TOP 10 PADA DOMAIN XYZ. AC. ID," vol. 8 No 1, 2022.
- [3] M. Tekege, "Analisis Kerentanan Aplikasi Web Dan Upaya Penetrasi," *J. FATEKSA J. Teknol. dan Rekayasa*, vol. 8, no. 2, pp. 29–39, 2023.

- [4] S. Alhidamkara and I. Lucia Kharisma, "Analisis Keamanan Website Sekolah Menengah Atas Negeri 1 Surade Dengan Pendekatan Comprehensive Website Security Assessment Website Security Analysis for State Senior High School 1 Surade with a Comprehensive Website Security Assessment Approach," pp. 57–65, 2023.
- [5] A. H. Putri, "Strategi Mitigasi Risiko Aset Kritis Teknologi Informasi Menggunakan Metode Octave Dan FMEA," *Tecno.com*, vol. 16, no. 4, pp. 367–377, 2017.
- [6] S. Nurul, S. Anggrainy, and S. Aprelyani, "Faktor-Faktor Yang Mempengaruhi Keamanan Sistem Informasi: Keamanan Informasi, Teknologi Informasi Dan Network (Literature Review Sim.)," *J. Ekon. Manaj. Sist. Inf.*, vol. 3, no. 5, pp. 564–573, 2022.
- [7] Y. M. Putra, "KEAMANAN INFORMASI," no. November, 2019.
- [8] H. Ikhsan and N. Jarti, "Analisis Risiko Keamanan Teknologi Informasi," *J. Responsive*, vol. 2, no. 1, pp. 31–41, 2018.
- [9] A. Fajaryanto Cobantoro, "PENERAPAN OWASP VERSI 4 UNTUK UJI KERENTANAN WEB SERVER (STUDI KASUS EJURNAL SERVER KAMPUS X MADIUN)," 2016, [Online]. Available: www.contoh.com/adduserp.php
- [10] R. Pangalila, A. Noertjahyana, and J. Andjarwirawan, "Penetration Testing Server Sistem Informasi Manajemen," *Penetration Test. Serv. Sist. Inf. Manaj. dan Website Univ. Kristen Petra*, pp. 1–6, 2015.
- [11] A. I. Rafeli, H. B. Seta, and W. Widi, "Pengujian Celah Keamanan Menggunakan Metode OWASP Web Security Testing Guide (WSTG) pada Website XYZ," 2022.
- [12] M. Yunus, "Analisis Kerentanan Aplikasi Berbasis Web Menggunakan Kombinasi Security Tools Project Berdasarkan Framework Owasp Versi 4," *J. Ilm. Inform. Komput.*, vol. 24, no. 1, pp. 37–48, 2019, doi: 10.35760/ik.2019.v24i1.1988.
- [13] N. Budarsa, "Analisis Risiko Keamanan Informasi Menggunakan Metode Octave Allegro dan Analytical Hirarchy Process pada Data Center Pemerintah Kabupaten Buleleng," *J. Ilmu Komput. Indones.*, vol. 7, no. 1, pp. 13–15, 2022.
- [14] R. Fitria Hamzah, I. Dwi Jaya, and U. Mizani Putri, "Analisis Risiko Keamanan Sistem Informasi E-LKP Dengan Metode Octave Pada Perguruan Tinggi Negeri X," 2020.
- [15] B. Supradono, "MANAJEMEN RISIKO KEAMANAN INFORMASI DENGAN MENGGUNAKAN METODE OCTAVE (OPERATIONALLY CRITICAL THREAT, ASSET, AND VULNERABILITY EVALUATION)." [Online]. Available: http://jurnal.unimus.ac.id
- [16] N. L. Kuntari, Y. H. Chrisnanto, and A. I. Hadiana, "MANAJEMEN RISIKO SISTEM INFORMASI DI UNIVERSITAS JENDERAL ACHMAD YANI MENGGUNAKAN METODA OCTAVE ALLEGRO," 2018.