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Abstract 
 

Both static and dynamic adaptive neural networks have been broadly utilized in mathematical 
modeling and numerical analysis. This study aimed to enhance the accomplishment of Dynamic 
Neural Networks (DNN) models by applying wavelet functions as activation functions. Research 
that models and forecasts the intensity of solar radiation in Mataram City shows that combining B-
Spline and Morlet wavelet activation functions can significantly increase the DNN model 
performance. Wavelet-DNN (W-DNN) was modeled with an identical architecture; the best 
showed the increase in the model achievement (0.7596 points for in-sample and 0.8502 points 
for out-sample data). Mainly for out-sample data, the model's performance using the W-DNN+ 
intervention model increased by 4.0492 points. 

  
Keywords: Performance optimization of the model, adaptive neural networks, DNN Model, 
Wavelet, Solar Radiation. 
  
1. Introduction 

Some aspects researchers consider as the basis for using the neural network model (NN) as an 
analytical tool include having adaptive abilities, learning algorithms by self, generalization abilities, 
and solving complex and complicated nonlinear problems [1]. Based on the time variable, the 
applications of the NN models can be divided into two categories, namely, static and dynamic 
neural network (SNN and DNN) models. The SNN model is based on a fixed time (static), while 
the DNN model develops according to changes in time (dynamic). 

In terms of modeling solar radiation intensity, many studies have investigated the scatter scheme 
of the intensity of solar radiation in different locations using various methods and approaches. 
The other modeling techniques have been implemented by a combination method of empirical 
techniques and machine learning [2], deep learning model [3], six machine learning algorithms 
for daily global solar radiation and air temperature [4], multivariate time series based on NN 
method [5], ensemble artificial intelligence [6], and deep learning approach [7]. Meanwhile, those 
based on (static) neural network models include the ANN model with different learning algorithms 
[8], the modeling of solar radiation intensity in Mataram City, the hybrid wavelet-based model in 
Lombok Island, and SNN [9]. 

Introduced around 2000, the development and application of the DNN is a relatively new model 
after Warren McCulloch and Walter Pitts proposed the (static) neural network models in 1943 
[10]. In its development, the DNN model has been applied to different research to address 
problems, including weather data forecasting [11], Zika virus risk forecasting [12], Time-varying 
inner wall temperature prediction  [13], VGF crystal growth process forecast [14], diagnostic and 
detection fault  [15], and wastewater effluent quality prediction [16].  

The implementation of a DNN model using a recurrent neural network (Elman and Jordan) has 
been carried out by [11] to predict weather patterns, especially temperature, rainfall, and solar 
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radiation intensity in Anglesey (North Wales, UK). Similar research was carried out by [17] using 
meteorological data in the form of wind speed, wind direction, air humidity, air pressure, and 
rainfall to model and predict the intensity of solar radiation in Mataram City, West Nusa Tenggara 
using the DNN model to produce significant forecasts. 

Combining two or more methods and models into one model to solve a problem is called a hybrid 
model. In practice, several studies show that the hybrid model shows significant results in terms 
of effectiveness and efficiency. In particular, research in [9] showed that the Wavelet Neural 
Network Model (static) could effectively model and estimate solar intensity. Furthermore, [17] has 
successfully modeled and predicted solar radiation intensity using the DNN model. 

Based on the advantages of the hybrid model, this research combines the wavelet method and 
the neural network model to develop a hybrid model called Wavelet-DNN (W-DNN) using the 
neural network model as the core model and the wavelet method as a tool to optimize it. The W-
DNN model is used to model and predict the intensity of solar radiation as a health indicator, 
especially in Mataram City. 

 
2. Research Methods 

2.1. Data and Data Organization 

This study used the solar radiation data of Mataram City from June 2018 until May 2019, derived 
from the Environment and Forestry Agency, West Nusa Tenggara Province (Figure 1). 
Meteorological information was utilized, including wind speed, humidity, air temperature, air 
pressure, and rainfall as predictor data. Next, solar radiation data was used in response to 
predictor data. 
  

 
 

Figure 1. The intensity of solar radiation data of Mataram City from June 2018 until May 2019 
 
Descriptively, the intensity of solar radiation data of Mataram City is given by several parameters, 
namely mean, max, min, and standard deviation of data, 55.3108, 135.3750, 0.00, and 14.2272, 
respectively. 

Solar radiation intensity as an environmental parameter is affected by various meteorological 
specifics, including wind speed, air pressure, humidity, and rainfall. Solar radiation intensity can 
also be analyzed using time series data based on previous solar radiation intensities. Based on 
this situation, the intensity of solar radiation can be formulated as follows: 
 

 ( )1 2 3 4 5( ) ( ), ( ), ( ), ( ), ( ), ( ) ,  y t f x t x t x t x t x t y t k= − for some .kN.  (1) 
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Variable ( ),  1,2, ,5ix t i =  respectively denotes wind speed, humidity, air temperature, air 

pressure, and rainfall at time t, and variable y represents solar radiation's intensity.  
The research data consisted of 325 data sets into two subsets, namely 280 (86.15%) training (in-
sample) data and 45 (13.85%) testing (out-sample) data. 

2.2. The Architecture of the Wavelet-Dynamic Neural Network (W-DNN) Model 

The W-DNN architecture we propose consists of 6 layers: two initial layers, three hidden layers, 
and one output layer (Figure 2). The initial layer shows the data pre-processing process using the 
normalization method. The hidden layer depicts the data aggregation and activation process, and 
the output layer represents the hidden layer output aggregated into the model output.  This W-
DNN architecture was developed in our previous research [17]. 

2.3. Activation Function 

This research model predicts solar radiation intensity as the impact of various meteorological and 
rainfall variables. The DNN Model uses the wavelet activation function, called the Wavelet-
Dynamic Neural Network (W-DNN). The wavelet functions used are the B-spline Wavelet and the 
Morlet Wavelet. 

The successful application of a neural network in data analysis depends on selecting the 
activation function used in the model. There were two types of wavelet functions used in this 
study, namely the B-Spline Wavelet [18] and the Morlet Wavelet, shown respectively by the 
following equations for any variable x:  
 

 
1 2

0 22

4 (2 1)
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n denotes the order of the B-spline wavelet, a constant = 0.657066,b  0 0.409177,f =  and 
2 0.561145,w = and 

 
2( ) exp( )cos(5 )x x x = −  (3) 

 

 
 

Figure 2. The proposed W-DNN architecture 
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2.4. Feed-Forward W-DNN procedures 

The W-DNN feed-forward procedure offered in this research is basically on the architecture in 
Figure 2 and is provided through the following steps. 

The 1st Layer: the input data is separated into two categories. The first input category, 
meteorological variables, including wind speed, temperature, humidity, air pressure, and rainfall, 

consists of m1 data. The second input group comprises previous solar radiation data (lags) 

consisting of m2 data.  

The 2nd Layer: the input data was transformed through normalization methods by the following 
rules:  
 

 

' '

min

' '

max min

k
k

X X
X

X X

−
=

−
 (4) 

 

where 
'

kX '

maxX , and 
'

minX  correspondingly, indicate the k -th, the minimum, and the maximum 

values from the primary data set. The number of neurons was identical to the 1st Layer, namely 

1 2m m m= +  neuron. 

 
The 3-rd Layer:  If C is the number of classes of the input data, then each input data 

,  1,2, ,kX k m=  in the 2-nd Layer was aggregated by the rule: 
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where 1ijW dan 2kjW  respectively represent weight matrices 1m C  dan 
2m C , with

11, 2, ,i m= , 21, 2, ,k m= , dan 1,2, ,j C= . The number of neurons in this Layer 

was 2C neuron. 

The 4-th Layer: The weighted 
1 2 dan j jU U  for 1,2, ,j C=  was energized using wavelet 

functions, such as Wavelet B-Spline (Equation 2) and Wavelet Morlet (Equation 3).  

The 5-th Layer: The activation result of 
1 2 dan j jU U  , let 

1,  1,2, ,jV j C= and 
2,  1,2, ,jV j C=  

was totaled again with weights 
31 32 and , 1,2, ,  and

ij ij
W W i C=   1,2, ,j C=  using the equations 

as follows: 
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then  

 
1 1 2 2

1 2( ) ( ) ( )k j k j k jp V p V p V =  +  , , 1,2, ,k j C=  (6c) 

for some constants 1 2 and .   

The 6-th Layer: The terminal outputs of the W-DNN model are as the following: 

Type a: 
1

4 ,  1, 2, ,
C

k

k

y W p k C 
=

=  + =  (7a) 

Type b:  ( )
1

4Max ,  1, 2, ,
C

k

k

y W p k C 
=

=  + =   (7b) 
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for fundamental constants a and b. 

2.5. Learning Parameters Optimization  

Optimizing the parameter was executed in the backward procedures of the W-DNN model. The 

optimized parameters contained weights 1W , 2W , 31W , 32W , and 4W . Optimizing the 

parameter utilizing the momentum gradient descent, minimizing the cost function: 
 

 ( )
2

1

1 N
d

j j

j

J y y
N =

= −  (8) 

 

N indicates the number of data, jy  and 
d

jy  correspondingly shows the output of the offered 

model and the j-th objective data, j = 1,2, …, N. 

The optimizing procedure was accomplished using the partial differential formulas as follows: 
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Moreover, the procedure to improve weight used: 
 

 ,   1,2,3,4.ij ijk kW W dW k= + =  (14) 

 
where, 
 

 (1 )ij r ijk kdW m W m W=  −  −   (15) 

m, r , ijkW with 1,2,3,4k =  correspondingly representing the momentum parameter, 

learning rate, and weight change ,  1,2,3,4kW k =   determined by Equations (9)-(13). 

 
3. Results and Discussion  

The Wavelet-Dynamics Neural Network (W-DNN) model proposed in this research is divided into 
two types: the Type-a Model, the W-DNN Model with output aggregation using weighted 
coefficients, and the Type-b Model, the W-DNN Model with output aggregation using the 
maximum coefficient. 



LONTAR KOMPUTER VOL. 14, NO. 3 DECEMBER 2023 p-ISSN 2088-1541 
DOI : 10.24843/LKJITI.2023.v14.i03.p03 e-ISSN 2541-5832 
Accredited Sinta 2 by RISTEKDIKTI Decree No. 158/E/KPT/2021 
 

155 
 

3.1. W-DNN Models with Weighted Coefficients (Type-a)  

Referring to equation (7a) and numerical simulation using the trial-and-error method, data 
modeling of solar radiation intensity that is influenced by meteorological data and rainfall using 
the DNN Wavelet Model with weighted coefficients is calculated by the following equations: 
 

 

7

1

41.035 0.2492k

k

y W p
=

=  +  (16) 

 
Where 
  

( ) ( )1 217.178  ,   1.785  ,k p k t p k tp  + =  

 

Refer to Equations (5c), and ( )1 ,p k t  and the B-Spline Wavelet Equation (2), and ( )2 ,p k t  refer 

to the Morlet Wavelet Equation (3) give the result with an accuracy based on RMSE of 13.5306 
with a graph as shown in Figure 3. Referring to equation (16) with the same indicator, namely 
RMSE, the model's accuracy on testing data (out-sample) is 17.6820. 
 

 
 

Figure 3. Comparison between actual data of solar radiation intensity (blue) and W-DNN model 
(red) 

 
Descriptively, the W-DNN model implementation to the intensity of solar radiation data influenced 
by meteorological and rainfall data can be seen in Table 1. Based on Figure 3, it can be seen that 
the W-DNN model result curve tends to be close to the average and shows that the data pattern 
produced by the W-DNN model is generally similar to the characteristics of the actual data, 
especially in out-sample data. In this case, it can be seen that when the actual data graph 
increases or decreases, the model data also shows the same behavior. The statistics data in 
Table 1 reinforce that the average W-DNN model has a difference of 0.3663 points below the 
average actual data. 
 
 
Table 1. The W-DNN model's performance on solar radiation intensity is determined by 
meteorological and rainfall variables. 

Data 

Statistical Indicator 
Performa 
(RMSE) 

Min Mean Max 

Model Actual Model Actual Model Actual 

Training 42.0446 0 56.6543    57.0206   61.1037 135.3750 13.5306 
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Testing 10.9818 2.3077 47.7559 48.1202 56.4109 71.5429 17.6820 

Testing+ 14.8941 2.3077 47.1193 48.1202 54.6967 71.5429 16.3160 

      + Intervention Model  

By paying attention to the patterns formed, especially in the out-sample data, it can be seen that 
the model patterns are consistently below the actual data. If the constant factor can be viewed as 
an exogenous factor, and the addition of a constant value in equation (16) of 0.0850 points is a 
form of exogenous factor intervention, and other parameters are considered stable, then equation 
(16) given as below: 

 

7

1

41.035 0.3342k

k

y W p
=

=   +  (17) 

Applying equation (17) to the testing data (out sample) increases the model's performance for 
forecasting the intensity of solar radiation; initially, the RMSE was 17,680 to 16.3169. Graphically, 
the graph quality of testing data (out sample) is shown in Figure 4.  
 

 
 

Figure 4. Graphical comparison between actual data of solar radiation intensity (blue) and W-
DNN model (red) and improvement of W-DNN model curve on the testing data (green).  

 
If observed specifically for the testing data, Figure 5 shows that the W-DNN Model given by 
equation (17), called the W-DNN+ Model, with a green graph, is more accurate than the original 
W-DNN Model with a red graph. This is statistically proven by the RMSE indicators of 16.3160 
and 17.6820, respectively. 
 

 
 

Figure 5. Graphic comparison of solar radiation intensity for testing data (out sample) between 
actual data (blue), W-DNN model data (red), and W-DNN+ intervention model 
(green) 
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3.2. W-DNN Model with Maximum Coefficient (Type-b)  

Referring to equation (7b) and numerical simulation using the trial-and-error method, data 
modeling of solar radiation intensity that is influenced by meteorological data and rainfall uses the 
DNN Wavelet Model with the maximum coefficient given by the following equation: 

  
7

1

43.595 1.9999k

k

y Max W p
=

=   +  (18) 

where 

1 20.8078   ( , )  9.485  ( , )kp p k t p k t=  +   

Refer to equation (6c), and ( )1 ,p k t  refer to the B-Spline wavelet function in equation (2), and 

( )2 ,p k t  refer to the Morlet wavelet function in equation (3), which gives results with RMSE-

based accuracy of 13.5306 with a graph as shown in Figure 6. Referring to equation (18) with the 
same indicator, namely RMSE, the model accuracy for the testing data (out-sample) is obtained 
at 17.5422. 

 

 

Figure 6. Graphical comparison of actual data on solar radiation intensity (blue) with the W-
DNN model (red) 

Descriptively, the application of the W-DNN model with maximum coefficients on solar radiation 
intensity data influenced by meteorological and rainfall data can be seen in Table 2. Figure 6 
indicates that the yield curve of the W-DNN model with maximum coefficients tends to be close 
to the average and shows that the data pattern produced by the W-DNN model is generally similar 
to the characteristics of the actual data. In this case, it can be seen that when the actual data 
graph increases or decreases, the model data also shows the same behavior. This is reinforced 
by the statistical data in Table 2, which shows that the average W-DNN model has a difference 
of 0.0945 points above the average actual data. 

Similar to the type-a model, paying attention to the patterns formed in the out-sample data shows 
that the model pattern is consistently below the actual data. If the constant factor is seen as an 
exogenous factor, and the addition of the constant value in equation (18) of 0.0850 points as a 
form of exogenous factor intervention, and other parameters are considered stable, equation (18) 
given as below: 
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Applying equation (19) to the testing data (out sample) increases the model's performance for 
forecasting the intensity of solar radiation, from an RMSE of 17.5422 to 14.3432. The increase in 
graphical performance on the testing data (out sample) is shown in Figure 7. 
 
Table 2. W-DNN model performance in modeling the intensity of solar radiation determined by 

meteorological and rainfall variables 

Data 

Statistical Indicator  
Performa 
(RMSE) 

Min Mean Max 

Model Aktual Model Aktual Model Aktual 

Training 42.0446 0 57.1151    57.0206   105.5355 135.3750 13.9380 

Testing 25.5104 2.3077 38.0180 48.1202 55.1116 71.5429 17.5422 

Testing+ 35.8403 2.3077 48.3479 48.1202 65.4415 71.5429 14.3432 

      + Intervention Model 
  

 
 

Figure 7. Graphical comparison of actual data between solar radiation intensity (blue) and the W-
DNN model (red) and improvement of the W-DNN model curve on the testing data 
(green). 

 
If observed specifically for the testing data, Figure 8 shows that the W-DNN Model given by 
equation (19), called the W-DNN+ model, with a green graph, is more accurate than the original 
W-DNN Model with a red graph. This is statistically proven by the RMSE indicators of 14.3432 
and 17.5422, respectively. 
 

 
 

Figure 8. Graphical comparison of solar radiation intensity for testing data (out sample) 
between actual data (blue), W-DNN model data (red), and W-DNN+ 

intervention model (green) 

Referring to the research conducted by [17], using the activation function from the wavelet 
function family improves the performance of the DNN model both for training data and testing 
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data (see Table 3). Performance comparison between the DNN and W-DNN models is shown in 
Table 3 below. 
 
Table 3. Comparison of the DNN Model and the W-DNN Model 

Model 
Model Performance Remarks: 

Type I-a DNN Model:  binary sigmoid activation 
function and output aggregation process 
using weighted function. 

Type I-b DNN Model: binary sigmoid type 
activation function and the output 
aggregation process using the maximum 
function. 

Type II-a DNN Model: hyperbolic tangent type 
activation function and output aggregation 
process using weighted function. 

Type II-b DNN Model: hyperbolic tangent type 
activation function and output aggregation 
process using maximum function. 

Type-a Model W-DNN: the output aggregation 
process uses a weighted function. 

Type-b Model W-DNN: aggregation process 
output using maximum function. 

W-DNN+ Model: W-DNN model with an 
intervention coefficient 

In Sample 
Data 

Out Sample 
Data 

Type I-a DNN Model 14.2835 18.4005 

Type I-b DNN Model 14.2802 18.7382 

Type II-a DNN Model 14.5490 18.6353 

Type II-b DNN Model  14.2802 18.3924 

Type a W-DNN Model  13.5306 17.6820 

Type a W-DNN+ Model  16.3160 

Type b W-DNN Model  13.9380 17.5422 

Type b W-DNN+ Model  14.3432 

 
Based on Table 3, it can be seen that using the activation function from the wavelet function family 
can improve the performance of the DNN model, both for training data and testing data. For in-
sample data, the W-DNN model with output values calculated using input aggregation using 
weighted coefficients tends to be better than the aggregation model using the maximum 
coefficient. As for the out-sample data, the W-DNN model with output values calculated using 
input aggregation using maximum coefficients tends to be better than the aggregation model 
using weighted coefficients. For training data, RMSE Model W-DNN Type A and Type B are 
13.5306 and 13.9380, respectively. As for the testing data, RMSE Model Type A and Type B were 
17.6820 and 17.5422, respectively. These results align with research conducted by [9]  and [17]. 

The performance of the W-DNN Model, especially for testing data, can be improved by providing 
intervention to the W-DNN Model, both Type A and Type B, by adjusting the constant values in 
the model. For Type A, adding a constant value of 0.0850 points causes an increase in model 
performance of 1.366, from an RMSE of 17.6820 to 16.3160. Whereas for Type b, adding a 
constant value of 0.1492 points causes an increase in model performance of 3.199, from an 
RMSE of 17.5422 to 14.3432. 

 
4. Conclusion 

Case studies of modeling and forecasting the intensity of solar radiation as the effect of several 
meteorological and rainfall variables show that applying the wavelet function as an activation 
function in the Dynamic-Neural Network (DNN) Model can improve the models' performance. A 
performance increase occurs with both training and testing data. The W-DNN forecasting model 
performs better when constant parameters are adjusted as an exogenous factor. 
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