Sentiment Analysis on Product Reviews from Shopee Marketplace using the Naïve Bayes Classifier

Emil R. Kaburuan\textsuperscript{a1}, Yunita Sartika Sari\textsuperscript{b2}, Ika Agustina\textsuperscript{a3}

\textsuperscript{a}Informatics Engineering Department, Faculty of Computer Science, Mercu Buana University
Jakarta, Indonesia
\textsuperscript{1}emil.kaburuan@mercubuana.ac.id
\textsuperscript{3}ikaag.08@gmail.com

\textsuperscript{b}Information System Department, Faculty of Computer Science
Mercu Buana University
Jakarta, Indonesia
\textsuperscript{2}yunita.sartika@mercubuana.ac.id

Abstract

Online shopping has become a popular shopping method ever since the number of internet users increased. Online shopping activities have become very easy and flexible because they can be completed anywhere and anytime. The products provided are also complete. The products sold often do not always match the actual conditions because the product can only be seen through pictures. Users who have purchased a product can share their opinions using the review feature. However, the products purchased thousands or millions of times have many reviews. To take an overview of the product, it is essential to go through every positive and negative review, which takes a lot of time and effort. Reviews of products from the Shopee marketplace will be classified into positive or negative sentiments towards women's home wear clothing or house dress in this study. The research starts with data crawling, text preprocessing, training data, testing, and evaluation model and then concludes with a general description based on the most frequently discussed topics in the reviews for each sentiment class. Classification is done using the Naïve Bayes Classifier algorithm. The accuracy obtained is 90.03%. The total dataset is 2907 data.

Keywords: online shopping, sentiment analysis, naïve Bayes classifier, product reviews, Shopee

1. Introduction

Shopping is part of everyday life [1]. Shopping activities that were previously done offline by visiting shops or markets can now be done online using gadgets only. Online shopping provides consumers with more information and opportunities to compare products and prices, a better product selection, and more convenience and ease in finding the desired product online [2]. There are already many marketplaces available. One of them is Shopee which has provided various needs such as food, clothing, accessories, electronic devices, and even household equipment. Online shopping has many advantages, but there are also disadvantages. The products sold often do not always match the actual conditions, like the shape, color, and size, because they can only be seen based on the picture. It is not like the original condition, as shown in the image.

Reviews of a product are critical in deciding product purchases because they can provide an overview of product quality based on other consumers' experiences [3]. The decisions we make are influenced by the opinions of others in some cases [3]. Looking at the reviews given by other consumers to get an overview of a product is essential to form purchasing products online [4]. Reviews of a product can increase interest in buying and using the product. Users can provide reviews about products purchased with the review feature from consumers that the marketplace has provided. Sellers can use these reviews as material for evaluation, and potential buyers also get an overview of the products they are interested in based on the experiences of other consumers. The reviews also can help sellers and buyers know each product's quality.
Researchers have researched sentiment analysis for product reviews previously. Researchers have explored sentiment analysis for product reviews previously. Much research has been developed using Naïve Bayes Classifier for films [3], applications [5], [6], restaurants [7], and delivery services [8], with each research having fairly high accuracy. Sentiment analysis also has been used for application reviews using SVM [9] and KNN [10], and there is also using long short-term memory for comments written on social media [11]. The research compares the naïve Bayes classifier with the lexicon-based holistic. It can conclude that the naïve Bayes classifier method has a better precision value and accuracy level than the lexicon-based holistic method [11].

Text mining classification will be discussed in this study from a review of a product of home wear clothes for women, commonly called a house dress, from one of the shops in Shopee. Reviews will be classified using the Naïve Bayes Classifier algorithm into positive and negative sentiments. Based on previous research, the Naïve Bayes Classifier method has a pretty good performance and has been widely used in research in the field of text mining, and has a high level of accuracy. Therefore, this study uses the Naïve Bayes Classifier. After sentiment classification, it will analyze the general description of a product based on the reviews given by users, including the product's advantages and disadvantages from each sentiment.

2. Research Methods

![System Main Flowchart](image)

Figure 1. System Main Flowchart

Figure 1 shows the steps carried out in this study. The process starts with data collection, text preprocessing, training data, model testing, evaluation and visualization, and conclusions.

2.1. Data Collection

Data was collected using a web crawling method from reviews written by users who purchased one of the home wear clothes products for women or house dresses sold on the Shopee marketplace. Crawling is done using the API provided by Shopee and the Python programming language used by Google Colaboratory. The data was collected from the review and rating columns on the product review page.

2.2. Text Preprocessing

Text preprocessing is done to clean data and change what was initially unstructured data to be more structured. The stages of text processing are divided into several, namely: case folding, text cleaning, word normalization, stemming, translating datasets into the English language, and
stopword removal. The result of text preprocessing is data that is ready to be processed for the data training and sentiment classification process.

2.3. Training Data
Training data is used to build a suitable model for the classification. The dataset is divided into train data and test data. The amount of train data is 70% of the total dataset. The algorithm used is Naive Bayes Classifier.

2.4. Testing Model
The model's results that have been trained are then tested on the test data to see the model's accuracy. The amount of test data is 30% of the dataset. The test uses the Naive Bayes Classifier algorithm to determine the sentiment class of each review. Naive Bayes Classifier is an algorithm that predicts the probability of each sentiment class and then chooses which class has the most significant probability. The Naive Bayes Classifier algorithm has a pretty good performance and has been widely used in text mining research, with a high accuracy level [12]. Comparison calculations between the terms in the testing data and each existing class can be done with Equation (1) [13].

\[
P(a_j|v_j) = \frac{nc+mp}{n+m}
\]  

Information:
\( n \) = the number of training examples for which \( v = v_j \)
\( nc \) = number of examples for which \( v = v_j \) and \( a = a_j \)
\( p \) = a priori estimate for \( P(a_j|v_j) \)
\( m \) = the equivalent sample size

Equation (2) is used to calculate the classification of the test data to find which class has the greater probability after calculating the comparison between the terms in the testing data. [13].

\[
V_{nb} = \arg \max_{v_j \in V} P(v_j) \prod P(a_i|v_j)
\]  

2.5. Evaluation and Calculating Accuracy
The classification results are then calculated for accuracy by comparing the classification results using Naive Bayes with the manual labeling sentiment using a confusion matrix. A confusion matrix is a tool to evaluate the classification model to estimate whether objects are right or wrong [14]. Results from the confusion matrix will also be used to calculate accuracy, recall, and precision.

2.6. Visualization and Product Overview
The first visualization uses a bar chart to display the result of each class of sentiment classification results. Positive and negative sentiment classes will be displayed as a word cloud to determine what words or topics are most often discussed in product reviews. A general product overview is concluded based on user reviews from the words with the highest frequency of occurrence showing in the word cloud.

3. Result and Discussion

3.1. Data Collection
The rating and review will be taken into the datasets from the review page. A rating is a standard symbol representing the overall consumer satisfaction with the seller's or marketer's product or service (usually denoted using 1 to 5 stars), where more stars or higher scores reflect better satisfaction with the product or service [15]. A total of 2907 reviews were collected. The next step is manual labeling which will be used as an actual prediction to compare the predicted results from the program. Reviews are divided into two classes of sentiment, positive and negative.
reviews. Manual sentiment labeling resulted in 2314 or 79.63% in positive sentiment and 593 or 20.98% in negative sentiment. Data training will use 70% dataset, which is 2034, and 30% for testing data, which is 873.

### Table 1. Sample Dataset

<table>
<thead>
<tr>
<th>Label</th>
<th>Review</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positif</td>
<td>Bahan bagus, pengiriman cepat</td>
</tr>
<tr>
<td>Negatif</td>
<td>Salah kirim min, tolong dicek lagi 😒</td>
</tr>
</tbody>
</table>

#### 3.2. Preprocessing

a. Case folding: converts all letters to lowercase. All the letters in the text reviews are changed to lowercase, as shown in Table 2.

### Table 2. Case Folding

<table>
<thead>
<tr>
<th>Before</th>
<th>After</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bahan bagus, pengiriman cepat, Salah kirim min, tolong dicek lagi 😒</td>
<td>bahan bagus, pengiriman cepat, salah kirim min, tolong dicek lagi 😒</td>
</tr>
</tbody>
</table>

b. Text cleaning: removing punctuation, emoji, and numbers. Some emojis and punctuation marks were removed from the text, as shown in Table 3.

### Table 3. Text cleaning

<table>
<thead>
<tr>
<th>Before</th>
<th>After</th>
</tr>
</thead>
<tbody>
<tr>
<td>bahan bagus, pengiriman cepat, salah kirim min, tolong dicek lagi 😒</td>
<td>bahan bagus pengiriman cepat, salah kirim min tolong dicek lagi</td>
</tr>
</tbody>
</table>

c. Text normalization: removing repetitive characters in a word and converting slang words into common words.

### Table 4. Text normalization

<table>
<thead>
<tr>
<th>Before</th>
<th>After</th>
</tr>
</thead>
<tbody>
<tr>
<td>bahan bagus pengiriman cepat</td>
<td>bahan bagus pengiriman cepat</td>
</tr>
<tr>
<td>salah kirim min tolong dicek lagi 😒</td>
<td>salah kirim min tolong dicek lagi</td>
</tr>
</tbody>
</table>

d. Stemming: changing words to their root forms. The word “dicek” is changed to the root word “cek” as shown in Table 5.

### Table 5. Stemming

<table>
<thead>
<tr>
<th>Before</th>
<th>After</th>
</tr>
</thead>
<tbody>
<tr>
<td>bahan bagus pengiriman cepat</td>
<td>bahan bagus kirim cepat</td>
</tr>
<tr>
<td>salah kirim min tolong dicek lagi</td>
<td>salah kirim min tolong cek lagi</td>
</tr>
</tbody>
</table>

e. Translate to English

### Table 6. Translate to English

<table>
<thead>
<tr>
<th>Before</th>
<th>After</th>
</tr>
</thead>
<tbody>
<tr>
<td>bahan bagus kirim cepat</td>
<td>good material fast delivery</td>
</tr>
<tr>
<td>salah kirim min tolong cek lagi</td>
<td>sent wrong one please check again</td>
</tr>
</tbody>
</table>
Stopword removal: removes meaningless or irrelevant words. An example of removed words is "again".

**Table 7. Stopword removal**

<table>
<thead>
<tr>
<th>Before</th>
<th>After</th>
</tr>
</thead>
<tbody>
<tr>
<td>good material fast delivery</td>
<td>good material fast delivery</td>
</tr>
<tr>
<td>sent wrong one please check again</td>
<td>sent wrong one please check</td>
</tr>
</tbody>
</table>

### 3.4. Classification Results using Naïve Bayes Classifier

Classification is carried out on all datasets using a previously trained model. The sample results of the classification are as follows.

**Table 8. Sample Classification Data Test**

<table>
<thead>
<tr>
<th>No</th>
<th>Review</th>
<th>Actual Prediction</th>
<th>Naïve Bayes Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>good material fast delivery</td>
<td>Positive</td>
<td>Positive</td>
</tr>
<tr>
<td>2</td>
<td>sent wrong one please check</td>
<td>Negative</td>
<td>Negative</td>
</tr>
</tbody>
</table>

The following is an example of the calculation of the classification results shown in Table 8 to calculate the probability of each class in the review. The probability of the sentiment class in the training data and the comparison between the terms and testing data in each existing class using Equation (1) must be calculated first. To obtain the document probability for each class, multiply the class probability by the word probability. The next step is to decide which probability is the largest and which is the sentiment class.

Sentiment class probability from the training data can be calculated with the Equation:

\[
P(\text{Positive}) = \frac{\text{amount positive classes}}{\text{all training data}}
\]

\[
P(\text{Positive}) = \frac{1619}{2034} = 0.795968
\]

\[
P(\text{Negative}) = \frac{\text{amount negative classes}}{\text{all training data}}
\]

\[
P(\text{Negative}) = \frac{415}{2034} = 0.203539
\]

The frequency of occurrence of words for each class in the sample test data is shown in Table 9.

**Table 9. Frequency of Occurrence of Words in Training Data**

<table>
<thead>
<tr>
<th>Word</th>
<th>Positive Class</th>
<th>Negative Class</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>good</td>
<td>866</td>
<td>83</td>
<td>949</td>
</tr>
<tr>
<td>material</td>
<td>636</td>
<td>107</td>
<td>743</td>
</tr>
<tr>
<td>fast</td>
<td>273</td>
<td>13</td>
<td>286</td>
</tr>
<tr>
<td>delivery</td>
<td>240</td>
<td>20</td>
<td>260</td>
</tr>
<tr>
<td>sent</td>
<td>40</td>
<td>86</td>
<td>126</td>
</tr>
<tr>
<td>wrong</td>
<td>27</td>
<td>39</td>
<td>66</td>
</tr>
<tr>
<td>one</td>
<td>96</td>
<td>116</td>
<td>212</td>
</tr>
<tr>
<td>please</td>
<td>20</td>
<td>43</td>
<td>63</td>
</tr>
<tr>
<td>check</td>
<td>9</td>
<td>14</td>
<td>23</td>
</tr>
</tbody>
</table>

Next is calculating a word’s probability for the positive or negative class using Equation (1).

**Test data 1:**

\[
P(\text{positive} | \text{good}) = \frac{866+4 \cdot 0.795968}{949+4} = 0.912050
\]

\[
P(\text{positive} | \text{material}) = \frac{636+4 \cdot 0.795968}{66+4} = 0.855668
\]

\[
P(\text{positive} | \text{fast}) = \frac{273+4 \cdot 0.795968}{212+4} = 0.952358
\]

\[
P(\text{positive} | \text{delivery}) = \frac{240+4 \cdot 0.795968}{63+4} = 0.921151
\]
\[
P(\text{negative|good}) = \frac{83 + 4 \cdot 0.203539}{949 + 4} = 0.087948
\]
\[
P(\text{negative|material}) = \frac{107 + 4 \cdot 0.203539}{743 + 4} = 0.144330
\]
\[
P(\text{negative|fast}) = \frac{13 + 4 \cdot 0.203539}{286 + 4} = 0.047635
\]
\[
P(\text{negative|delivery}) = \frac{20 + 5 \cdot 0.203539}{260 + 4} = 0.078842
\]

**Test data 2:**

\[
P(\text{positive|sent}) = \frac{40 + 5 \cdot 0.795968}{126 + 5} = 0.335724
\]
\[
P(\text{positive|wrong}) = \frac{27 + 5 \cdot 0.795968}{66 + 5} = 0.436336
\]
\[
P(\text{positive|one}) = \frac{96 + 5 \cdot 0.795968}{212 + 5} = 0.460737
\]
\[
P(\text{positive|please}) = \frac{20 + 5 \cdot 0.795968}{63 + 5} = 0.352645
\]
\[
P(\text{positive|check}) = \frac{9 + 5 \cdot 0.795968}{23 + 5} = 0.463566
\]
\[
P(\text{negative|sent}) = \frac{86 + 5 \cdot 0.203539}{126 + 5} = 0.664257
\]
\[
P(\text{negative|wrong}) = \frac{39 + 5 \cdot 0.203539}{66 + 5} = 0.563630
\]
\[
P(\text{negative|one}) = \frac{116 + 5 \cdot 0.203539}{212 + 5} = 0.539252
\]
\[
P(\text{negative|please}) = \frac{43 + 5 \cdot 0.203539}{63 + 5} = 0.647319
\]
\[
P(\text{negative|check}) = \frac{14 + 5 \cdot 0.203539}{23 + 5} = 0.536346
\]

The next step is to find the maximum value from the multiplication of the probability value and the P-value for each class using Equation (2), as follows:

**Test data 1:**

\[
V(\text{Positive}) = 0.795968 \times 0.912050 \times 0.855668 \times 0.952358 \times 0.921151 = 0.54494241
\]
\[
V(\text{Negative}) = 0.203539 \times 0.087948 \times 0.144330 \times 0.047635 \times 0.078842 = 0.000009
\]
\[
V_{nb} = \text{argmax} (V(\text{Positive}) | V(\text{Negative}))
\]
\[
V_{nb} = \text{argmax} (0.54494241 | 0.000009)
\]
\[
V_{nb} = 0.54494241
\]

**Test data 2:**

\[
V(\text{Positive}) = 0.795968 \times 0.335724 \times 0.436336 \times 0.460737 \times 0.352645 \times 0.463566
\]
\[
V(\text{Negative}) = 0.203539 \times 0.664257 \times 0.563630 \times 0.539252 \times 0.647319 \times 0.536346
\]
\[
V_{nb} = \text{argmax} (V(\text{Positive}) | V(\text{Negative}))
\]
\[
V_{nb} = \text{argmax} (0.008782 | 0.014267)
\]
\[
V_{nb} = 0.014267
\]

Calculation with Equation (2) shows that the 1st test data obtained a maximum value of 0.54494241 in positive class probability, so the sentiment class value is Positive. The maximum value obtained in the second test data is 0.014267 in negative class probability, so the sentiment class value is Negative.
3.5. Evaluation and Calculation Accuracy

Validation of the classification results using a confusion matrix. The confusion matrix of the manual classification results on the classification results from the model that has been built is shown in Table 10.

<table>
<thead>
<tr>
<th>Actual Class</th>
<th>Predict Class</th>
<th>Predicted &quot;+&quot;</th>
<th>Predicted &quot;-&quot;</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual &quot;+&quot;</td>
<td>670</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Actual &quot;-&quot;</td>
<td>62</td>
<td>116</td>
<td></td>
</tr>
</tbody>
</table>

In the confusion matrix, it can be concluded as follows. The number of positive sentiment classes that were correctly predicted was 364. The number of wrongly predicted positive sentiment classes is 19. The number of correctly predicted negative sentiment classes is 325. The number of improperly predicted negative sentiment classes is 58. The cause of the error prediction is probably due to the imbalance of the dataset between positive and negative sentiment, which causes the tendency of the model to predict sentiment as positive.

Accuracy, precision, and recall are shown in the calculation below.

\[
\text{Accuracy} = \frac{TP+TN}{TP+FP+FN+TN} = \frac{670+116}{670+25+62+116} = 0.9003 = 90.03\%
\]

\[
\text{Precision} = \frac{TP}{TP + FP} = \frac{670}{670 + 25} = 0.964 = 96.4\%
\]

\[
\text{Recall} = \frac{TP}{TP + FN} = \frac{670}{670 + 62} = 0.9153 = 91.53\%
\]

3.6. Visualization and Product Overview

The 2907 dataset is classified after the model is successfully built and evaluated to conclude an overview of the negligee product and visualized using a bar chart to indicate the number of each sentiment class. Then display words that appear most often in each sentiment class using a word cloud to conclude the general picture of the negligee product.

The classification obtained 79.77% or 2319 positive sentiments and 20.23% or 588 negative sentiments, as shown in Figure 2.

![Figure 2. Bar Chart Classification Result](image-url)
Figure 3. Word Cloud Positive Sentiment

Figure 3 shows the words that appear most often in the positive sentiment class, which are: "good", "thank", "material", "cool", "color", "negligee", "price", "fast delivery", "good material", "according price", "cool material", "thank seller", "pretty good", and others. The conclusion of positive sentiment is buyers quite like the negligee product sold in one of the shops at Shopee. With a reasonably low price, it turns out that the quality is good, and the material is cool when used. The delivery is fast too. The color or motif of the negligee is also following what was ordered.

Figure 4. Word Cloud Negative Sentiment

Figure 4 shows the words that appear most often in the negative sentiment class, which are: "color", "one", "ordered", "motif", "doesn't match", "different", "disappointed", "came", and others. The conclusion for the negative sentiment is, that the buyer is disappointed because there was a mistake in the order. The patterns and colors ordered do not match what was sent. This could be because the seller is not careful in processing orders, or it could be that the variation chosen by the buyer is empty, but the seller does not confirm and replaces it randomly according to the existing stock, so the buyer feels disappointed.

4. Conclusion

This research has sentiment analysis that can be used to find out the general picture of the product based on reviews from customers who have made a purchase. The product discussed in this final project is home clothing for women or what is commonly called a negligee from one of the shops in Shopee. The Naïve Bayes Classifier algorithm can classify reviews on negligee products into positive and negative sentiments with a reasonably high accuracy of 90.03%. For all the reviews that have been classified, it can be seen which words appear most often using the word cloud in each sentiment class to conclude an overview of the product based on customer reviews.

From a total of 2907 data obtained, as much as 79.77% or 2319 positive sentiments and 20.23% or 588 negative sentiments, it can be concluded that the buyer’s opinion about the negligee
product at the store is quite reasonable. On positive reviews, customers like their negligee products because the price is low and the quality of the material is good and cool when worn. Delivery was fast, and the variety ordered was following what was sent. In negative reviews, customers are disappointed because there was an error in their order; the motif or color ordered did not match what was sent.

In addition to the Naïve Bayes classifier, several methods have been conducted for sentiment analysis. Research [16] was conducted using the KNN method for sentiment analysis of Shopee application reviews and adding the Jaro Winkler Distance algorithm for word improvement. The test resulted in an accuracy of 0.876, a precision of 0.810, a recall of 0.942, and an f-measure of 0.882. Research [17] conducted a sentiment analysis using review data on Google Play to compare the accuracy between the Support Vector Machine method and the Decision Tree. Through classification, the accuracy results are 90.20% for the Support Vector Machine method and 89.80% for the Decision Tree method.

Future works will be done using an algorithm other than the Naïve Bayes Classifier to get the highest accuracy. Then it can be better if implemented as a system or application that automatically performs from data crawling to visualization so that the system can be more beneficial for various parties.

References


