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Abstract 

 

Indonesian citizens who use motorized vehicles are increasing every year. Every motorcyclist in 
Indonesia must wear a helmet when riding a motorcycle. Even though there are rules that require 
motorbike riders to wear helmets, there are still many motorists who disobey the rules. To 
overcome this, police officers have carried out various operations (such as traffic operation, 
warning, etc.). This is not effective because of the number of police officers available, and the 
probability of police officers make a mistake when detecting violations that might be caused due 
to fatigue. This study asks the system to detect motorcyclists who do not wear helmets through a 
surveillance camera. Referring to this reason, the Circular Hough Transform (CHT), Histogram of 
Oriented Gradient (HOG), and K-Nearest Neighbor (KNN) are used. Testing was done by using 
images taken from surveillance cameras divided into 200 training data and 40 testing data 
obtained an accuracy rate of 82.5%. 

  
Keywords: Machine learning, Helmet detection, Histogram of an oriented gradient, K-nearest 
neighbor, Circular hough transform 

  
 
1. Introduction 

Motorized vehicles are one type of transportation used in many parts of the world, especially 
motorbikes. In Indonesia, the number of people has been using motorbikes was increasing. Based 
on Police Headquarters data in 2013, the number of motorbikes in Indonesia ware 84,732,652 
units, a large number of motorbikes caused a high number of traffic accidents involving 
motorcycles. In 2013 there were 119,560 motorbikes involved in the accident. Referring to the 
number of an accident has been recorded the total fatalities reached 26,416 (National Police 
Headquarters)[1]. 

There are several factors that cause accidents, namely human factors, vehicle factors, and 
environmental factors[2]. These factors are related to each other, but human factors are the 
biggest cause of accidents. This is indicated by the records of the National Police Headquarters 
in 2010-2016, which showed 70% of the causes of accidents were human factors. Many human 
factors also resulted in the loss of lives. To overcome this, police officers have carried out various 
operations (such as traffic operation, warning, etc.). This is not effective because of the number 
of police officers available, and the probability of police officers make mistakes when detecting 
violations that might be caused due to fatigue.  

Over the past few years, many attempts have been made to analyze traffic, including vehicle 
detection and classification and helmet detection. Modern traffic systems usually use computer 
vision algorithms, such as background and foreground image detection for the segmentation of 
moving objects. The use of computer vision algorithms can be applied to the results of video 
captured by a surveillance camera that is installed on a crossroad or a large road.  

Previous research about helmet detection has been done by many researchers. Many methods 
are used for helmet detection, either feature extraction, shape detection, and image classification. 
Dongmala and Klubsuwan[3]. Proposes to detect half and full helmets using Haar Like Feature 
and Circular Hough Transform. They use a haar-like feature to detect the helmet. 
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region that is face/nose/mouth/left eye/right eye, but it can not distinguish between half and full 
helmet. So, they use CHT to detect the half and full helmet. Wen et al. [4]. Proposed circle arc 
detection based on the Circular Hough Transform method. They applied it to detect helmets 
through surveillance cameras at ATMs. The disadvantage of this method is that they only use the 
geometry feature to verify whether there is a helmet on the image captured by the camera. 
Geometry features are not enough to detect helmets. The head can be detected as a helmet 
because it is similarly circular. Rubaiyat et. al.[5]. proposed helmet detection uses for construction 
safety. They use Discrete Cosine Transform + Histogram of Oriented Gradient (HOG) for human 
detection method and Color + CHT for the helmet detection method. In this study, helmet 

 
 

Figure 1. Proposed Method 
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detection was carried out after color filtration so that helmet detection could be more accurate. 
However, this method will provide a disadvantage when the detected helmet is a different color. 
Based on the research above, we can see that CHT is good for detecting circles. Therefore it can 
be used to detect helmets that are also circular. Meanwhile, HOG is used to get the feature value 
to classify the circle that comes from the helmet itself as the main target of detection with a human 
head without a helmet. The classification method we chose is K-Nearest Neighbor (KNN). KNN 
was chosen because it is a simple method, only by setting the value for k by analyzing the number 
of neighbors by looking for the closest distance value as the basis for the classification parameter. 
Also, KNN can be applied to a multiclass system, wherein my research is divided into two classes, 
namely the helmet-wearing rider class and the un-helmeted rider class.  

Based on the above problems and previous literature studies, we propose automatic helmet 
detection using Circular Hough Transform (CHT) for shape detection, Histogram of Oriented 
Gradient (HOG) for feature extraction, and K-Nearest Neighbor (KNN) for image classifier. Data 
is obtained from taking frames on surveillance videos. 

 
2. Research Method 

In this research, the proposed method can be seen in Fig. 1. The first step is to get the image 
from a surveillance video. The second step is used to search for a circular object in the image 
using CHT. The third step is feature extraction using HOG. The fourth step is to classify the 
extracted feature using KNN. The last step is to get the accuracy, precision, and recall from the 
KNN classifier.  

2.1. Input 

2.1.1. Surveillance Video 

The video used in this research is a surveillance video that we got from a surveillance camera 
placed in sideroad and crossroads with a resolution of 1920x1080. 

2.1.2. Frames 

We save each frame from the video. The video has 25 fps, so we get 25 images each second of 
the video. After that, we save the image and will be used in the next steps. 

2.2. Detection Circular Object 

2.2.1. Grayscale 

A grayscale image or gray level image is one of the color spaces of an image. The gray level 
represents the number of quantization intervals in grayscale image processing. At this time, the 
most used method for storage is 8-bit storage. In an 8 bit grayscale image, there are 256 gray 
levels from 0 to 255. With 0 is black and 255 is white [6]. In this research, we used equation (1) 
to convert the RGB image to a grayscale image. 
 

𝐺𝑟𝑎𝑦𝑠𝑐𝑎𝑙𝑒 =  
𝑅+𝐺+𝐵

3
     (1) 

 
R is the intensity of the pixel in the red channel, G is the intensity of the pixel in the green channel, 
and B is the intensity of the pixel in the blue channel. 

2.2.2. Circular Hough Transform 

Circular Hough Transform (CHT) is a method to detect a circular object. Many research has been 
done using CHT, such as detecting a person from surveillance video[7] and cell detection for bee 
comb image[8]. CHT is based on the Hough transform. 
To detect circle CHT is using a voting process that calculates the possibility of edge point that is 
lying on a circle. It uses the circle formula to set the parameter of three-dimensional space to 
collect votes and to search a circle within a fixed radius. The votes will be saved in an accumulator. 
The objective of the CHT is to find the center point from every edge point of a circle in the image 
through the iteration of the equation (2) and (3). 
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𝑥 = 𝑎 + 𝑅 × cos (𝜃)         (2) 

𝑦 = 𝑏 + 𝑅 × sin (𝜃)      (3) 

 
Denotes 𝑎 and 𝑏 is the center point, 𝑅 is the radius, and 𝜃 is the angle. After the iteration 
accumulator with the most votes is the true center point of a circle. 

2.2.3. Save the Detected Object 

Save all detected images. The stored image will later be used for training and testing data in the 
classification process. 
 
2.3. Histogram of Oriented Gradient (HOG) Extraction 
 

   
(a)                                 (b) 

 

Figure 2. Aspect Ratio in HOG; (a) Original Image 69x79 pixel; (b) Resize Image 64x128 pixel 
 

  
(a)                      (b) 

 
Figure 3. Two Computation Unit in HOG; (a) Cells; (b) Block 

 

 
 

Figure 4. Calculation Process in Each Cell 
Histogram of Oriented Gradients algorithm is a feature descriptor that is used to extract features 
from images. The algorithm is based on the distribution of the Gradient in the image. The final 
feature is a one-dimensional array of histograms from the extracted image. In the HOG, there are 
two computation units for feature extraction. It is cell and block. The cell size is 8x8 pixels, and 
the block size is 16x16 pixels. There are four cells in one block. Figure 3. shows the example of 
the two computation units for feature extraction. After the computation of the current block, it 
moves to the next block with an overlap of 1 cell[9]. 
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2.3.1. Preprocessing 

In the preprocessing step, the HOG input image needs to have a fixed aspect ratio, so we get the 
same amount of feature. In this case, we use a 1:2 ratio, for example, 32x64, 64x128, or 
1000x2000, but we cannot use 103x150 because it is not a 1:2 ratio. In this research, we use an 
image size of 64x128 pixels. Each image is scaled, keeping its aspect ratio preserve. 

Therefore before we calculate the gradients, we resize every image. The example of the resize 
image can be seen in Figure 2. 
 

 

2.3.2. Calculate Gradient 

After we get the resized image, we calculate the Gradient. In this process, we calculate the 
gradient magnitude and direction from every pixel using equations (4) and (5). 

 

𝑔 =  √𝑔𝑥
2 + 𝑔𝑦

2     (4) 

𝜃 = 𝑎𝑟𝑐𝑡𝑎𝑛
𝑔𝑦

𝑔𝑥
     (5) 

 

Denotes 𝑔 is a gradient magnitude, 𝜃 is gradient direction and 𝑔𝑥 , 𝑔𝑦 is a gradient of the 𝑥-axes 

and 𝑦-axes. We can calculate the 𝑔𝑥 , 𝑔𝑦 by using Sobel Filtering. 

2.3.3. Calculate HOG in each cell 

in this step, we calculate the Histogram of Gradient in each cell (8x8 Pixels). The Histogram is a 
vector or an array of 9 bins corresponding to angles 0, 20, 40, …, 160 degrees. So we must put 
gradient direction and magnitude into a histogram of Gradient. The Gradient of direction is the 
bins or array, and the Gradient of magnitude is the value of the bins or array. The calculation 
process can be seen in Figure 4. 

2.3.4. Normalization of each block 

After we get the Histogram of Gradient in each cell, we normalize the Histogram from each block 
(16x16 pixels). A histogram normalization computation is done by combining all histograms that 
belong to one block. One block has four cells and has nine feature vectors, so in one block, we 
have 36 (4 cells x 9 bins) feature vectors. We normalize the block using equation (6). 
 

𝑥𝑖
𝑛 =  

𝑥𝑖

√𝑥1
2+ 𝑥2

2+⋯+ 𝑥36
2

     (6) 

𝑥𝑖
𝑛is the Normalization of each block result, 𝑥𝑖 is the feature vector and 𝑖 is a number feature in a 

block from 1 to 36. 

2.3.5. Calculate the Feature 

The last step of HOG is to calculate the total feature vector from all blocks. In this research, we 
use an image of 64x128 pixels, so we have seven blocks in a horizontal position and 15 blocks 
in a vertical position. The total block we have is 105 (7x15) blocks. Each block has 36 feature 
vectors, so in total, we have 3780 (36x105) feature vectors. Table 1 shows an example of the 
HOG feature. Each data have 3780 feature vectors. 
 

Table 1. The Example of HOG Feature 

Feature f1 f2 f3 …  f3778 f3779 f3780 

Data 1 0.206719 0.013714 0.077928 …  0.054473 0.235448 0.130019 

Data 2 0.046905 0.033736 0.033864 …  0.019585 0.024376 0.112724 

Data 3  0.47073 0.0784 0.006978 …  0.000861 0.003578 0.010856 

Data 4 0.093873 0.076953 0.025398 …  0.043547 0.014677 0.073801 
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2.4. Classification Process Using K-Nearest Neighbor (KNN) 

K-Nearest Neighbor algorithm [10,11] is a method for classifying objects based on the closest 
distance between the training data and testing data. This algorithm is a simple classifier and easy 
to apply an algorithm that works well with recognition issues [12]. The training process for KNN 
only consists of the store the features and labels from training data. The classification process 
only searched for distance and assigned the label from the k-nearest neighbor who has the most 
votes. 

2.4.1. Set Train and Test Data 

KNN uses a distance system to calculate classification results. Therefore it requires training data 
and testing data. The data is obtained from a video with a 1080p resolution and has a frame rate 
of 25 fps. After that, we crop the area around the head of the motorcyclist to distinguish which 
one belongs to the positive and negative class. Image with helmet becomes the positive class, 
and image without helmet becomes the negative class. The video was taken in daytime 
conditions, and the camera is placed on the side of a road or intersection with a height of 2-4 
meters.   

In this research, we used 200 data consisting of 100 helmet wearing data (positive class) and 100 
non-helmet wearing data (negative class). The test data used 40 data consisting of 20 helmet-
wearing data (positive class) and 20 non-helmet-wearing data (negative class). The training data 
used 160 data consisting of 80 helmet wearing data (positive class) and 80 non-helmet wearing 
data (negative class). 

2.4.2. Set k-value 

In the KNN Classification, we need a k-value. The k-value used to determine how many 
calculation results will be used for voting. 

2.4.3. Calculate distance  

In this research, we use Euclidean Distance to calculate the distance between neighbors in KNN. 
The equation for Euclidean distance is shown in equation (7). 
 

𝑑(𝑇𝑟, 𝑇𝑦) = √(𝑓1𝑇𝑟
− 𝑓1𝑇𝑦

)2 + (𝑓2𝑇𝑟
− 𝑓2𝑇𝑦

)2 + ⋯ + (𝑓3780𝑇𝑟
− 𝑓3780𝑇𝑦

)2    (7) 

 

𝑑(𝑇𝑟, 𝑇𝑦) is the distance, 𝑇𝑟 is testing data, and 𝑇𝑦 is training data.   

2.4.4. Sort the Distance 

After we get the distance, we sort the distance from the smallest distance to the largest distance. 
Then we take some of the top data by following the k-value that has been set. For example, if we 
set the k-value to 5, then we take the five most top data. 

2.4.5. Determine the Class 

The result of classification is the class that has the most votes in the k-nearest neighbor. For 
example, we have a k-value of 5. In the five smallest data, we have 3 data with the label of 0 and 
2 data with the label of 1, so the classification result is class 0 because it has more votes than 
class 1 [13]. 
 
3. Result and Discussion  

In this section, the proposed method was tested by using a dataset that we collect from several 
frames from the surveillance video. The output of the system is the result of the KNN classification. 
The result is either the circular object is the helmet-wearing class or the non-helmet wearing class. 
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Table 2. Sample Data of Visual Experimental Result 

Input Result Actual Detected 

  

1 1 

  

2 2 

  

3 2 

  

2 1 

 

 
Figure 5. Example of the Dataset 

3.1. Visual Result 

The proposed method has been implemented. First, the original image is transformed to 
Grayscale, and CHT will be implemented to it. The CHT's purpose is to detect the head region of 
the motorcyclist. In this research, we select the CHT result that shows the head region because 
our purpose is to detect the helmet.  

The result of CHT will be cropped and then saved to build training and testing data. The data 
divided into 200 training data, which was obtained from selected frames consisting of 100 helmets 
wearing motorcyclist head image and 100 non-helmet wearing motorcyclist head image. The test 
data used 40 images 20 helmet wearing motorcyclist head image and 20 non-helmet wearing 
motorcyclist head image that was obtained from a different surveillance video with training data. 
The data divided into two classes, helmet-wearing class and non-helmet wearing class. Figure 5. 
shows the example of the dataset. 

To classify the data, we need to extract the feature from the image. We use HOG for feature 
extraction. There are 3780 features from each image. After that, we do labeling for each data. We 
do the feature extraction into both classes. The result is the same, only different in value table 2. 
Shows the example of the visual experimental results, the detected helmet is marked with a green 
circle, and the other is not marked. Several conditions cause detection failure, the image of the 
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head is not intact or covered with something, and the image of the head is too small. We 
conducted this experiment 40 times.  

3.2. Quantitative Result 

In order to present the performance of the proposed method, an experiment is conducted using 
the dataset. The measurement method uses the accuracy equation (8), precision equation (9), 
and recall equation (10). We use all the data in this experiment, which are 40 testing data and 
160 training data. The testing data is divided by four, each has ten images, and we will calculate 
the average accuracy. 
 

Table 3. Confucion Matrix 
 Predictive 

Relevant Irrelevant 

Actual 

Relevant 
True 
Positive 
(TP) 

False Negative (FN) 

Irrelevant 
False 
Positive 
(FP) 

True Negative (TN) 

 

Table 4. Testing Result 

Data 
k-
value 

Accuracy Precision Recall 

1 

1 0.80 0.80 0.80 

3 0.70 0.66 0.80 

5 0.70 0.66 0.80 

7 0.70 0.66 0.80 

2 

1 0.60 0.66 0.40 

3 0.60 0.66 0.40 

5 0.60 0.66 0.40 

7 0.70 0.75 0.60 

3 

1 1.00 1.00 1.00 

3 0.90 1.00 0.80 

5 0.90 1.00 0.80 

7 0.90 1.00 0.80 

4 

1 0.90 1.00 0.80 

3 1.00 1.00 1.00 

5 1.00 1.00 1.00 

7 1.00 1.00 1.00 

Average 

1 0.825 0.865 0.75 

3 0.80 0.83 0.75 

5 0.80 0.83 0.75 

7 0.825 0.852 0.80 

 
 
Table 5. Comparison Result 

Author Method  Acccuracy 

Wonghabut et. al. [14] Aspec Ratio  74 % 

Rubaiyat et. al. [5]  Color + CHT 81 % 

Proposed Method KNN + HOG 82.5 % 
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Table 6. Computation Time Result 

Test Number Time (s) 

1 1.40369 

2  1.42919 

3 1.48211 

4 1.44819 

5 1.42123 

6 1.44429 

7 1.43858 

8 1.42197 

9 1.42451 

10 1.43190 

Average 1.43457 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
    (8)  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
     (9)  

  𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
     (10)  

 
TP (True Positif) is the number of correct predictions in positive class, in this case, is the helmet-
wearing class, TN (True Negatif) is the number of correct predictions in negative class, in this 
case, is the non-helmet wearing class. FP (False Positif) is the number of incorrect predictions in 
the positive class, and FN (False Negatif) is the number of incorrect predictions in the 
negative[15]. The confusion matrix is shown in Table 3. 

Testing was done by using different k-value in the KNN classifier. In this research, the k-value 
that users ware 1,3,5 and 7. In this research, we classify the data into two classes, the first, the 
helmet-wearing class, and the second, is non-helmet wearing class. Each k-value produce a 
different result, but the result ware satisfactory. The result of the test is shown in Table 4. The 
average accuracy, precision, and recall are relatively high, and it is shown that the k-value of 1 
and 7 produces the highest score, but the k-value of 1 is better because it useless calculation 
than k-value 7. After getting the best result from our experiment, we compare it with previous 
research. We compare our work with two other research about helmet detection, and the result is 
our work produce slightly better accuracy when detecting helmet. Comparison results can be seen 
in Table 5. 

3.3. Computation Time Resul 

In order to know how fast the detection time of the proposed method, we do a computation time 
test. The test was done on a computer that runs Microsoft Windows 10 with a processor Intel(R) 
Core(TM) i5-4460 and 8 GB memory. The data we use in the test is the training and testing data 
mention in section 2.4.1. We run the program ten times with K-value 1, and the result is shown in 
Table 6. The average time we got from the experiments is 1.43457 s.  
In this research, we use the KNN classification because previous studies have good accuracy. 
Meanwhile, the consumption of computation time could be reduced by sklearn's tools in Phyton. 
KNN Classification uses sklearn's tools, only takes 0.4 seconds. Besides that, to increase the 
speed performance, we resize the original image that has a different size to become 64x128 pixel 
So, resizing the size of data also will be decreased the speed of KNN performance.  

The test results show a computation time for each detection. This shows that the proposed 
method produces a fast time to detect so that it can be implemented in real-time, although the 
quality is poor.  We can improve the quality of real-time implementation by reducing computation 
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time. This problem can be resolved by improving the quality of the computer or using a faster 
classification method. 
 
4. Conclusion 

This study comes about the detection of motorcyclists without a helmet. The system builds based 
on computer vision technology, which is divided as follows: shape detection, feature extraction, 
and image classification. The results were satisfactory. 

The KNN classifier using the feature from HOG can classify between the helmet-wearing 
motorcyclist and the motorcyclist that is not wearing a helmet. We use different k-value in the 
testing process. The K-value that got the best result is 1 and 7, with an average accuracy of 82.5 
% and average computation time is 1.43457 s. The present result is promising but can be 
improved. One of the future works is license plate recognition with the purpose of detecting the 
license plate from motorcyclists that are not wearing a helmet. For this, it is necessary an image 
with better quality to recognize the characters. 
 
References 
[1] Badan Pusat Statistik Kota Salatiga, “Salatiga Dalam Angka Tahun 2013,” pp. 1, 115, 155, 

2013. 
[2] L. Gicquel, P. Ordonneau, E. Blot, C. Toillon, P. Ingrand, and L. Romo, "Description of 

various factors contributing to traffic accidents in youth and measures proposed to alleviate 
recurrence," Frontiers of Psychiatry, vol. 8, no. JUN, pp. 1–10, 2017, doi: 
10.11591/ijeei.v6i4.463 

[3] P. Doungmala and K. Klubsuwan, "Half and Full Helmet Wearing Detection in Thai- land 
using Haar Like Feature and Circle Hough Transform on Image Processing Pathasu," Proc. 
- 2016 16th IEEE Int. Conference on Computer and Information Technology CIT 2016, 2016 
6th International Symposium Cloud and Service Computing IEEE SC2 2016 2016 
International Symposium Security and Privacy in Social Networks and Big Data, pp. 611–
614, 2017, doi: 10.1109/CIT.2016.87 

[4] L. J. L. C. Wen C. Chiu S., "The safety helmet detection for ATM's surveillance system via 
the modified Hough transform," Proceedings of Annual IEEE International Carnahan 
Conference on Security Technology, pp. 259–263, 2003, doi: 10.1109/CCST.2003.1297588 

[5] A. H. M. Rubaiyat et al., "Automatic detection of helmet uses for construction safety," 
Proceedings - 2016 IEEE/WIC/ACM International Conference on Web Intelligence 
Workshops, WIW 2016, no. November, pp. 135–142, 2017, doi: 10.1109/WIW.2016.10 

[6] T. Kumar and K. Verma, "A Theory Based on Conversion of RGB image to Gray image," 
International Journal of Computer Applications., vol. 7, no. 2, pp. 5–12, 2010, doi: 
10.5120/1140-1493 

[7] H. Liu, Y. Qian, and S. Lin, "Detecting persons using hough circle transform in surveillance 
video," VISAPP 2010 - Proceedings of the International Conference on Computer Vision 
Theory and Applications, vol. 2, no. January, 2010, doi: 10.5220/0002856002670270 

[8] L. H. Liew, B. Y. Lee, and M. Chan, "Cell detection for bee comb images using Circular hough 
transformation," CSSR 2010 - 2010 International Conference on Science and Social 
Research, no. Cssr, pp. 191–195, 2010, doi: 10.1109/CSSR.2010.5773764 

[9] Pei-Yin Chen, Chien-Chuan Huang, Chih-Yuan Lien, and Yu-Hsien Tsai, "An Efficient 
Hardware Implementation of HOG Feature Extraction for Human Detection," IEEE 
Transactions on Intelligent Transportation Systems, vol. 15, no. 2, pp. 656–662, 2014, doi: 
10.1109/TITS.2013.2284666 

[10] K. N. Stevens, T. M. Cover, and P. E. Hart, "Nearest Neighbor Pattern Classification," vol. 
IT-13, no. 1, pp. 21–27, 1967. 

[11] J. Maillo, S. Ramírez, I. Triguero, and F. Herrera, "kNN-IS: An Iterative Spark-based design 
of the k-Nearest Neighbors classifier for big data," Knowledge-Based System, vol. 117, pp. 
3–15, 2017, doi: 10.1016/j.knosys.2016.06.012 

[12] F. A. Mufarroha and F. Utaminingrum, "Hand Gesture Recognition using Adaptive Network 
Based Fuzzy Inference System and K-Nearest Neighbor," International Journal of 
Technology, vol. 8, no. 3, p. 559, 2017, doi: 10.14716/ijtech.v8i3.3146 

[13] J. Kim, B.S. Kim, and S. Savarese, "Comparing Image Classification Methods: K-Nearest-
Neighbor and Support-Vector-Machines," Applied Mathematics in Electrical and Computer 



LONTAR KOMPUTER VOL. 12, NO. 1 APRIL 2021 p-ISSN 2088-1541 
DOI : 10.24843/LKJITI.2021.v12.i01.p02 e-ISSN 2541-5832 
Accredited Sinta 2 by RISTEKDIKTI Decree No. 30/E/KPT/2018 

23 
 

Engineering, pp. 133–138, 2012. 
[14] P. Wonghabut, J. Kumphong, T. Satiennam, R. Ung-Arunyawee, and W. Leelapatra, 

"Automatic helmet-wearing detection for law enforcement using CCTV cameras," IOP 
Conference Series: Earth and Environmental Science, vol. 143, no. 1, 2018. doi: 
10.1088/1755-1315/143/1/012063 

[15] S. Tiwari, "Blur classification using segmentation based fractal texture analysis," Indonesian 
Journal of Electrical Engineering and Informatics, vol. 6, no. 4, pp. 373–384, 2018. doi: 
10.11591/ijeei.v6i4.463 


