
LONTAR KOMPUTER VOL. 11, NO. 2 AUGUST 2020 p-ISSN 2088-1541
DOI : 10.24843/LKJITI.2020.v11.i02.p05 e-ISSN 2541-5832
Accredited B by RISTEKDIKTI Decree No. 51/E/KPT/2017

114

Graph-QL Responsibility Analysis at Integrated
Competency Certification Test System Base on Web

Service

I Gede Susrama Mas Diyasaa1, Gideon Setya Budiwitjaksonob2, Haf idz Amarul Ma3, Ilham Ade

Widya Sampurnoa4, Ni Made Ika Marini Mandennic5

aDepartment of Informatic, University of Pembangunan Nasional “Veteran Jawa Timur

Jl. Rungkut Madya Surabaya, Indonesia
1igsusrama.if@upnjatim.ac.id, 3haf idzamarul@gmail.com

4ilhamade@gmail.com

bDepartment of Accounting, University of Pembangunan Nasional “Veteran Jawa Timur
Jl. Rungkut Madya Surabaya, Indonesia

 2gideon.ak@upnjatim.ac.id

cDepartment of Information Technology, Udayana University
Jl. Raya Kampus Unud Bukit Jimbaran, Bali, Indonesia

5made_ikamarini@unud.ac.id

Abstract

Graph-QL (Query Language) is a new concept in the Application Programming Interface (API).
Graph-QL was developed by Facebook which is implemented on the server-side. Although it is a
query language, Graph-QL is not directly related to the database, in other words, Graph-QL is not
limited to certain databases, either SQL or NoSQL. The position of Graph-QL is on the client and
server-side that access an API. One of the objectives of developing this query language is to
facilitate data communication between the backend and frontend / mobile applications. For this
reason, this paper will examine the responsibility of Graph-QL in terms of response time and
response size in the development of an integrated competency certification test system based on
web service and compared with efficiency and flexibility using the REST API. From the test
results, it was found that Graph-QL provided some advantages compare to REST API. It give
more flexibility for the clients to access the data and solve the most typical problem that was over
or under fetching cause by fixed data given by REST API endpoints.

Keywords: Graph-QL, Rest, Responsibility, Analysis, Web Service

1. Introduction

Graph-QL is a server-side query and runtime language for Application Programming Interfaces
(API) that prioritizes giving clients data exactly what they request [1]. In essence, Graph-QL is a
language for querying databases f rom client-side applications [2]. On the backend, Graph-QL can
specify to the API how the data is presented to the client. It is also designed to make APIs faster,
more f lexible and developer f riendly [3]. As a REST alternative, Graph-QL allows developers to
make requests that pull data from multiple data sources in a single APIs endpoint [4]. In addition,
the API manager will also have the f lexibility to be able add and remove f ields without having
af fect to existing queries [5]. Developers can also build APIs by any method they want. To prove
that Graph-QL has a fairly good responsibility, this paper is implemented in the manufacture and
testing of an integrated competency certification test system, and compared using the REST API
[6].

Some previous studies related to Graph-QL, among others in reference [7] is analyzing the
calculation of performance of Graph-QL and RESTful technology in the web information service
system of the Institute for Research and Community Service Hasanuddin University [7]. The
performance parameters used are Response Time and Throughput, with RESTful speeds still

LONTAR KOMPUTER VOL. 11, NO. 2 AUGUST 2020 p-ISSN 2088-1541
DOI : 10.24843/LKJITI.2020.v11.i02.p05 e-ISSN 2541-5832
Accredited B by RISTEKDIKTI Decree No. 51/E/KPT/2017

115

superior to Graph-QL because RESTful speeds are consistently stable in terms of access time
and data size. Whereas Graph-QL is dynamic because it can change depending on demand
f luctuations.

Another researcher [8] showed in his research that Graph-QL can reduce the size of the JSON
document returned by REST APIs in 94% (in the number of f ields) and 99% (in the number of
bytes), both of which are median results, but the dataset is used in this paper includes gray
literature articles, migrated system source code, and queries used in runtime evaluation publicly
available at https://github.com/gleisonbt/migrating-to-graphql [8].

Another case with another researcher, in reference [9], where the purpose stated in his papers to
understand the properties of language in the Facebook initial, by providing semantic formal
queries [9]. After that, language analysis is performed and shows that the language has very low
complexity for evaluation. This paper only compares the Graph-QL request language with the
classic request language, which is the acyclic conjunctive query language (ACQ). Research on
Advanced Data Retrieval with Graph-QL: a case study in Case Bakery Services, where this paper
also studies and compares two data collection approaches. REST and Graph-QL in the context
of case studies for web applications (Bakery Service applications), however, this paper does not
consider aspects such as caching, mutation, and security [10].

From some of the research above, it focuses on comparing performance of the Graph-QL with
the REST API based on aspects of Mutation, Query, and Type before using Data Manipulation
Language (DML) [11], whereas in the paper presented here, it has novelty, which is about
responsibility analysis of Graph-QL on the response time and response size, and also comparing
with REST in making an integrated system of "competency certification test" based on web
services which based on time and size of the response, and compare it with REST, and also
focuses on several aspects including Mutation which is an operation that involves changes in the
database, Query is an operation to take data in the database, and Types are almost the same
like classes in programming languages, and include aspects such as caching, mutation, and
security [12].

The steps for testing the responsibility of Graph-QL, first is the initial step to create an integrated
system of "competency certification testing" based on web services and b uild API REST and
Graph-QL APIs [13], then test each of the APIs above. The goal is the Graph-QL approach can
be set any conditions or data needed by a query in the manufacture of a system so that all data
as needed without additional information that is not needed. With hope that using Graph-QL will
be more efficient and flexible to get data [14].

2. Reseach Methods

The research began by building an integrated system of competency tests then input the data
into the database. This system will be built with 2 concepts in the API, Graph-QL and REST [15],
the data will be used as output requests f rom clients, then test and comparing the performance
of each API concept that has been built using the characteristics of QoS (Quality of Service). As
shown in Figure 1. Graph-QL test system design and REST APIs [16] [17].

The experiment was carried out, namely conducting an experiment to access the API endpoint of
Graph-QL and REST which has been applied to the integrated competency test system. The
factors that will be used as a comparison in this study are the speed, size, and effectiveness of
the response from Graph-QL and REST.

2.1. Building an information system Competency test

A competency test is a process of assessment both technical and non-technical through the
collection of a relevant test to determine whether a person is competent or not yet competent in
a Competency Unit or certain qualifications.

The competency test system is built based on problems in data processing and distribution in the
competency certification process at a professional certification Institution [18]. This system has 3
role users namely admin, assessor, and assessee (competency test participants). In this system,
the assessment has the role to register with the system, f ill in the APL 1 form, register professional

LONTAR KOMPUTER VOL. 11, NO. 2 AUGUST 2020 p-ISSN 2088-1541
DOI : 10.24843/LKJITI.2020.v11.i02.p05 e-ISSN 2541-5832
Accredited B by RISTEKDIKTI Decree No. 51/E/KPT/2017

116

certif ication, and fill in the APL-2 Self Assessment form. The assessor has the role to verify the
registration of assesse, check the assessee’s Self Assessments APL-2 form, conduct the
assessment, f ill in the observation form, portfolio, and decide the results of the assessee
graduation with the assessment record form. Admin in this system has the role to manage the
competency scheme data, manage the competency test data site, select assessors for each
assessee who register, manage the assessor user, verify the registration of the assessment and
create a competency test schedule.

Figure 1. Design of Graph-QL test systems and REST API

This system is built using an API [19] that allows for multiplatform system development. The f ire
concept used is Graph-QL which consists of 24 types of objects, 52 mutations, and 44 queries.
The tools used to build this system are using the PHP 7 programming language and the Lumen
f ramework [20]. The database management system (DBMS) used is MariaDB 10.4.6. The web
server used to run the competency test information system is Apache 2.4.41 on the local server
[21].

2.2. Building an API with Graph-QL

In the Graph-QL implementation using the Lumen f ramework and Lighthouse library the
architectural pattern used is in Figure 2, which explains the system architecture used in the Graph-
QL API. Requests will be accepted by the server and will be checked on Graph-QL Schema [22].
Then the request is continued to the resolver which uses a model to access the database. The
results of the requested data will be issued with a JSON data type [22].

Figure 2. Graph-QL Architecture

Resolver

Model

GraphQL query

DBMS

Output on JSON

Schema +
Middleware

LONTAR KOMPUTER VOL. 11, NO. 2 AUGUST 2020 p-ISSN 2088-1541
DOI : 10.24843/LKJITI.2020.v11.i02.p05 e-ISSN 2541-5832
Accredited B by RISTEKDIKTI Decree No. 51/E/KPT/2017

117

2.3 Building an API with REST

In the implementation of REST using the Lumen framework the pattern used is in Figure 3. Figure
3 is an architecture in implementing REST on the Lumen framework. Requests will be accepted
by the server and forwarded to Route [21]. The route will be then connected to a Controller that
uses a model to access the database. The results of the requested data will be issued with a
JSON data type [21].

2.4 Test Design of the REST API and Graph-QL

A trial was conducted to find out the functionality of the API with the concept of REST and Graph-
QL can run as desired or not. The trial was carried out using the Postman application, which is
an application commonly used to make HTTP requests on the server. Tests are carried out on
functions that have the same data output between REST and Graph-QL [22].

Figure 3. REST Architecture

3. Result and Discussion

The use of an API in an information system is a bridge between systems built on different
platforms so that the information system has one central server and database storage. Graph-QL
was present in 2015, according to the developer Graph-QL is easier to implement in an
information system and can reduce the number of requests on the server and have an impact on
reducing network traffic on the server.

3.1. Data retrieval using Graph-QL

Before performing data retrieval, the Schema of Graph-QL must f irst define all the attributes of
the database tables that are needed as output from requests received. An example of defining a
Graph-QL Schema on an object and query is in Figure 4 (a).

Figure 4. (a) shows the code used to define an object named Schema and the Query Graph-QL
code used to retrieve 1 schema data in the Lumen f ramework using the Lighthouse library. To
access the Query that was created in Figure 4. (a) using the code as in Figure 4. (b). Figure 4.
(b) shows the code used in querying Graph-QL with the writing format used is JSON. The results
of the query are in Figure 5.

Controller
/Middleware

Model

Route

Output on JSON

End-Point
DBMS

LONTAR KOMPUTER VOL. 11, NO. 2 AUGUST 2020 p-ISSN 2088-1541
DOI : 10.24843/LKJITI.2020.v11.i02.p05 e-ISSN 2541-5832
Accredited B by RISTEKDIKTI Decree No. 51/E/KPT/2017

118

(a) (b)

Figure 4. (a) Graph-QL Schema, (b) Graph-QL Query

Figure 5. Graph-QL Query Results

3.2. Retrieving data using REST

Using REST requires a function in the controller class that handles requests f rom clients. The
function code for retrieving the schema data is shown in Figure 6 (a). Namely a function that is
used to retrieve 1 schema data according to id. The result of this function is in Figure 6. (b), is the
result of REST, the writing format used is the same, JSON.

LONTAR KOMPUTER VOL. 11, NO. 2 AUGUST 2020 p-ISSN 2088-1541
DOI : 10.24843/LKJITI.2020.v11.i02.p05 e-ISSN 2541-5832
Accredited B by RISTEKDIKTI Decree No. 51/E/KPT/2017

119

(a) (b)

Figure 6. (a) Schema Function, (b). REST Result

3.3 Response time comparison results

In comparing the response time of the API implementation with the concept of Graph-QL and
REST, 20 experiments were carried out on each concept. The results of the response time
comparison between Graph-QL and REST are shown in Figure 7. The time displayed has units
of millisecond (ms)

Figure 7. Shows the results of the response time comparison between REST and Graph-QL. The
result shows that the REST response time is faster than Graph-QL. The average response time
of REST is 125.35ms while the average response time of Graph-QL is 262.15. In response time
testing is carried out on the process of fetching the schema data that is on the system. Only 25
data are available. From the results depicted in Figure 7, it will be dif ferent for each p rocess in
the system. Figure 2 shows that in terms of speed, REST is faster than Graph-QL.

Figure 7. Results of Comparison of REST and Graph-QL response times

3.4 Response size comparison results

In comparing the response sizes of the API Implementation with the Graph-QL and REST
concepts an experiment was conducted with the same required output goals. The results of
testing the REST response size are in Figure 8.

In Figure 10 it is explained that the response size of requests to the API with REST of 563 Bit is
taken in 160ms. While the results of the Graph-QL response size test in Figure 9.

0

100

200

300

400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Response Time on ms

REST GraphQL

LONTAR KOMPUTER VOL. 11, NO. 2 AUGUST 2020 p-ISSN 2088-1541
DOI : 10.24843/LKJITI.2020.v11.i02.p05 e-ISSN 2541-5832
Accredited B by RISTEKDIKTI Decree No. 51/E/KPT/2017

120

Figure 8. REST response size results

In Figure 9 explains that the response size of requests to the API with Graph-QL of 584 Bit
reached with 317 ms. these results are greater than the REST response size. But Graph-QL has
dynamic properties that can be adjusted to the needs so that if the data requirements are less
than the data in Figure 9, the response size of Graph-QL is smaller.

3.4 Comparisons With Large Data

Another experiment carried out to test the size or speed was to collect 17,329 lines of data with
the same code as the process for retrieving schema data in the previous experiment.

Figure 9. REST response size results

Figure 10. Graph-QL response results in asesmens

LONTAR KOMPUTER VOL. 11, NO. 2 AUGUST 2020 p-ISSN 2088-1541
DOI : 10.24843/LKJITI.2020.v11.i02.p05 e-ISSN 2541-5832
Accredited B by RISTEKDIKTI Decree No. 51/E/KPT/2017

121

Figure 11. REST response results in assessments

Figure 10 shows the results of the data retrieval process with 17,329 rows of independent
assessment data on the system using Graph-QL, while Figure 11 shows the data retrieval process
using REST. The results of the experiments conducted with 17,329 rows of data in terms of REST
speed were superior to Graph-QL with a ratio of 1: 5, but in terms of data size, Graph-QL was
lighter than REST due to its effectiveness in data retrieval with Graph-QL.

Figure 12. REST response results in asesmens

Figure 12 shows the results of 20 experiments for requests for the process of taking independent
assessment data on a system with 17329 rows of data, showing that the request time with REST
is faster than Graph-QL. This is still the same as previous experiments on 25 schema data with
REST and Graph-QL.

4. Conclusion

From the results of the research conducted and explained, REST and Graph-QL can be
implemented in the competency test information system. It shows that REST is superior in terms
of time and response size if the data needed is the same compared to Graph-QL. However, REST

0

1000

2000

3000

4000

5000

6000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Respons Time on ms

GraphQL Time REST Time

LONTAR KOMPUTER VOL. 11, NO. 2 AUGUST 2020 p-ISSN 2088-1541
DOI : 10.24843/LKJITI.2020.v11.i02.p05 e-ISSN 2541-5832
Accredited B by RISTEKDIKTI Decree No. 51/E/KPT/2017

122

is static, which means that the output results are in accordance with what is written in the function
code, it can cause under data fetching or over data fetching. Graph-QL that takes a more dynamic
approach, the output results can be modified to reduce the attributes as needed or to retrieve
data in the classes that are related to the requested class, which results in, reduced demand from
clients. The response size of Graph-QL will accord with the data needed. For this reason, this
system is bettered suited if the API is implemented with Graph-QL because each function on the
client system will have different data requirements.

References

[1] Mondaca, F., Schildkamp, P., & Rau, F. “Introducing KOSH, a f ramework for creating and

maintaining APIs for lexical data”. Proceedings of Electronic Lexicography in the 21st

Century Conference, 2019-October, 2019, 907–921.

[2] Brito, G., Mombach, T., & Valente, M. T. “Migrating to GraphQL: A Practical Assessment”.

SANER 2019 - Proceedings of the 2019 IEEE 26th International Conference on Software

Analysis, Evolution, and Reengineering, (January), 2019, 140–150.

https://doi.org/10.1109/SANER.2019.8667986

[3] Malakhov, K. S., Kurgaev, A. P., & Velychko, V. Y. “Modern Restful API DLS and

Frameworks for Restful Web Services API Schema Modelling, Documenting, Visualizing”.

Scientific Journals Problems of Programming, 2018, Vol. 4, pp. 059–068.

https://doi.org/10.15407/pp2018.04.059

[4] Ulrich, H., Kern, J., Tas, D., Kock-Schoppenhauer, A. K., Ückert, F., Ingenerf, J., & Lablans,

M. “QL 4 MDR: A GraphQL query language for ISO 11179-based metadata repositories”.

BMC Medical Informatics and Decision Making, 2018, Vol. 19, No.1, pp. 1–7.

https://doi.org/10.1186/s12911-019-0794-z

[5] Mark Logic Corp. REST Application Developer’s Guide, MarkLogic Corporation.US. 2019.

[6] Neumann, A., Laranjeiro, N., & Bernardino, J. “An Analysis of Public REST Web Service

APIs”. IEEE Transactions on Services Computing, June 2018. Pp. 99.

https://doi.org/10.1109/TSC.2018.2847344

[7] Hartina, D. A., Lawi, A., & Panggabean, B. L. E. “Performance Analysis of GraphQL and

RESTful in SIM LP2M of the Hasanuddin University”. Proceedings - 2nd East Indonesia

Conference on Computer and Information Technology: Internet of Things for Industry,

EIConCIT November 2018, pp. 237–240. https://doi.org/10.1109/EIConCIT.2018.8878524

[8] Brito, G., Mombach, T., & Valente, M. T. “Migrating to GraphQL: A Practical Assessment”.

SANER 2019 - Proceedings of the 2019 IEEE 26th International Conference on Software

Analysis, Evolution, and Reengineering, January 2019, pp. 140–150.

https://doi.org/10.1109/SANER.2019.8667986

[9] Hartig, O., & Pérez, J. “An initial analysis of facebook’s GraphQL language”. CEUR

Workshop Proceedings, June 2017.

[10] Taskula, T. “Advanced Data Fetching with GraphQL: Case Bakery Service”. Janne Kario

M.Sc. (Tech.) Jukka Keski-Luopa M.Sc, 2018, pp. 14–15.

[11] Farré, C., Varga, J., & Almar, R. “GraphQL Schema Generation for Data-Intensive Web APIs”.

Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), 11815 LNCS, 184–194.

https://doi.org/10.1007/978-3-030-32065-2_13

[12] Landeiro, M. I. F. Analysis of GraphQL performance: a case study. Springer International

Publishing, 2019.

[13] Ritsilä, A. “GraphQL: The API Design Revolution”, Haaga-Helia University, 2017. Retrieved

f rom https://www.theseus.fi/bitstream/handle/10024/141989/GraphQL- The API Design

Revolution.pdf?sequence=1&isAllowed=y

https://doi.org/10.1007/978-3-030-32065-2_13

LONTAR KOMPUTER VOL. 11, NO. 2 AUGUST 2020 p-ISSN 2088-1541
DOI : 10.24843/LKJITI.2020.v11.i02.p05 e-ISSN 2541-5832
Accredited B by RISTEKDIKTI Decree No. 51/E/KPT/2017

123

[14] Ghebremicael, E. S. “Transformation of REST API to GraphQL for OpenTOSCA”. University

of Stuttgart, 2017. https://doi.org/10.18419/opus-9352

[15] Ulrich, H., Kern, J., Tas, D., Kock-Schoppenhauer, A. K., Ückert, F., Ingenerf, J., & Lablans,

M. “QL 4 MDR: A GraphQL query language for ISO 11179-based metadata repositories”.

BMC Medical Informatics and Decision Making, Vol. 19, No. 1, pp. 1–7, 2019.

https://doi.org/10.1186/s12911-019-0794-z

[16] Hossain, A., Nowsin, M., Sheikh, A., Halder, M., Biswas, S., & Arman, A. I. Quality of Service

in Sof tware Def ined Networking Quality of Service in Sof tware Def ined Networking,

September, 2018.

[17] Karakus, M., & Durresi, A. “Quality of Service (QoS) in Software Defined Networking (SDN):

A survey”. Journal of Network and Computer Applications, Vol. 80, pp. 200–218, 2017.

https://doi.org/10.1016/j.jnca.2016.12.019

[18] Febiharsa, D., Sudana, I. M., & Hudallah, N. “Information System for Batik Profession

Certif ication Institution”. Journal of Vocational and Career Education, Vol. 3, No. 2, 2018.

https://doi.org/10.15294/jvce.v3i2.17259

[19] Guo, Y., Deng, F., & Yang, X. Design and Implementation of Real-Time Management System

Architecture based on GraphQL. IOP Conference Series: Materials Science and

Engineering, Vol. 466, No.1, 2018. https://doi.org/10.1088/1757-899X/466/1/012015

[20] Čechák, D. Using GraphQL for Content Delivery in Kentico Cloud. Is.Muni.Cz. 2017.

Retrieved from https://is.muni.cz/th/qm0cs/thesis.pdf

[21] Hartig, O., & Pérez, J. Semantics and Complexity of GraphQL Preprint Version *. 27th World

Wide Web Conference on World Wide Web (WWW), (Www), 1155–1164, 2018.

[22] Nogatz, F., & Seipel, D. Implementing GraphQL as a query language for deductive

databases in SWI-Prolog using DCGs, quasi quotations, and dicts. Electronic Proceedings

in Theoretical Computer Science, EPTCS, 234, 42–56, 2017.

https://doi.org/10.4204/EPTCS.234.4

