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Abstract

Numerical simulation of water surface waves is widely used to describe water flow and its impact
on human life. For instance, numerical simulation of waves is elaborated to simulate Tsunami as
an early warning system. Using a numerical approach, the study of water flow will reduce costs
and save time compared with the conventional approach (in the laboratory). Shallow water equa-
tions (SWE) is one of the mathematical models which can be used to describe water flow. In the
numerical simulation of SWE, the finite volume method is a robust method to approximate SWE.
The result of using a numerical approach depends on the number of grids. The high number of
grids then the smooth solution can be obtained. However, an increasing number of grids lead to
an increase in computational cost. In this paper, parallel computing using the OpenMP platform
is given to reduce the computational cost of numerical simulation. In parallel computing perfor-
mances, Speedup and Efficiency of numerical simulation using 6400 grids points are obtained
four times and 51%, respectively. Moreover, by several numbers of cores from 2 to 8, the CPU
time of parallel computing is shown decreasing along with the increasing number of computer
cores.
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1. Introduction

Dynamical movement of surface waves can be modeled using the various models. The simple
mathematical wave model to describe wave movement dynamically is known as Shallow water
equations (SWE). This model is widely used in describing fluid flow problem, such as flow in
canal, river, lakes, etc. or it can be used to simulate Tsunami phenomena as an early warning
system (see [1, 2, 3] for more detail). Model SWE is a system of hyperbolic equations which
consists of two equations (mass and momentum conservation). In one dimension space, SWE is
given as follows.

oh  O(hu)
dhu) 0 (hu®+ 3gh?)
o+ o =0. (2)

where h(x,t) describes water height, «(z,t¢) describes average velocity, ¢ shows gravitational
coefficient, moreover x and ¢ are space and time, respectively.

To solve (1 - 2) numerically, one robust method can be used, which is called the finite volume
method (FVM) [4, 5, 6]. FVM is widely used to approximate the hyperbolic type of equations
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in the numerical problem. Generally, there are two types of approach in FVM, staggered grid
and collocated grid model. The detail of these two numerical models can be found in some
references [1, 6, 7, 8]. As shown in [6] and [8], FVM collocated and staggered grid model are
satisfying mathematical properties of shallow water equations, i.e., preserve positivity of water
height, satisfy the well-balanced condition, etc.

Mathematically, a good approximation result depends on the size of space steps or grids. This size
is obtained by dividing the domain space into several discrete spaces[9]. Indeed, increasing the
number of grids causes high computational cost for approximating (1 - 2). In numerical scheme
of (1 - 2), two equations (mass and momentum) will be approximated. Therefore, the process of
approximating two equations needs long time execution using a large number of grids.

Here, computational cost can be minimized by applying computer science techniques which is
called parallel computing. In this case, computation tasks are optimized using several cores in
a single computer. Several references, as in [9, 10, 11, 12] and [13], show the ability of parallel
computing for tackling computational cost in the numerical approach. In this paper, the goal of this
paper is to implement multi-cores parallel computing in a collocation scheme for SWE. Moreover,
the numerical simulation of the dry-wet dam-break problem will be elaborated to investigate the
performance of parallel computing.

In order to complete this paper, in Section 2 a brief introduction of FVM collocated scheme with
HLLC flux for SWE. In Section 3, the parallel algorithm of numerical scheme is given. The numer-
ical results and parallel performances are provided in Section 4. The conclusion of this paper is
shown in Section 5.

2. Numerical Scheme
For simplicity, SWE (1 - 2) can be rewritten in the following compact form,

Ui+ F(U), =0 (3)
where
U = (h,hu)T, (4)
1 T
FU) = (hu,hu2+-29h2) . (5)

In FVM, the spatial and time domain is discretized into several control volumes. For instance, in
Figure 1 a control volume V;, is given at point . This control volume is defined on (z,_1 2, Tj+1/2) X
(t",t"*+1). Consider computational domain of simulation is © = [0, L] x [0, 77, then the following
discrete properties can be defined as,

e point z;, = k x Az with the space step Az = L/N, andk ¢ M ={0,1--- | N, },
e pointt” =n x At with At =T/N,andn € T ={0,1,---},

where N, and N; are the number of discrete points of spatial and time, respectively.
Let's U, k € Z,n € N be a discrete value of solution SWE (3), then it can written as

le/Umﬂ)m,WeMmeT (6)
Vi

Therefore in FVM collocated scheme, the discretization of SWE is given as

n+1 n Fm — F
Uy, ka_’_ k+3 k-1

A7 Ao =0, VkeMneT (7)
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Figure 1. The visualization of control volume in FVM.

where flux Fiys will be approximated using the numerical flux which called HLLE (Harten, Lax,
van Leer and Einfeld) and given as

vt = SR, Uia) = el F(Uly) + ao F(UR) — as(Uih, — UR), (8)
where F'(Uy) is numerical flux function (5). Meanwhile, coefficients a; and a5 are given as follows,

" _ min(A2,0) —min(Ay,0) =1 —a g — 2| A1 — A1]Ag]
e A2 — Ap > v 2(A2 — A1)

9)

The coefficients A\; and A\, can be obtained in some references, for instance, see [4, 14, 15]. Thus
the discretization (7) can be rewritten as

At

U =U - A
T

FUE UL —SUL_, ), YkeM,neT (10)

Note that numerical form (10) is under stability condition, which is given by the following condition
A ar (11)

v max (|uk\ + \/ng)

with 0 < v < 1 is called Courant number.

3. Parallel Architecture

Parallel computing can is a computational procedure that is to compute several tasks of compu-
tation simultaneously. This type of computing can be done by a single computer with multi-cores
or multiple computers. One popular platform in multi-cores parallel computing is called OpenMP
(Open Multi-Processing). This platform is a shared memory multiprocessing programming type
and can be used in several programming languages like C/C++, Fortran, etc.

For example, in [9], parallel computing using the OpenMP platform is shown success to reduce
computational time for solving the 1D heat equation. Moreover, OpenMP is shown as simple and
straightforward in application. The performance of OpenMP depends on the specification of the
computer. In this paper, two measurements of parallel performance metrics will be elaborated.

Here speedup and efficiency metrics will be given. The speedup can be obtained by

(12)



LONTAR KOMPUTER VOL. 11, NO. 1 APRIL 2020 p-ISSN 2088-1541
DOI : 10.24843/LKJITI.2020.v11.i01.p01 e-ISSN 2541-5832
Accredited B by RISTEKDIKTI Decree No. 51/E/KPT/2017

Where T3 and T, are CPU time for serial and parallel, respectively. Where p describes the number
of cores that are used for computing. Meanwhile, the efficiency of parallel computing can be
computed as

E(p) = % x 100%. (13)

In this paper, the numerical method (7) will be computed in parallel computing. Therefore the
numerical algorithm is given for simplicity. A numerical algorithm for computing (7) in parallel can
be seen in Figure 2.

Initialization

Up = [, Ulz,t%)dz

while (t < tFinal)

Y
CFL Condition

Ax
1%
max(|ug| + v/ ghs)

At =

t=1t+ At

Y
Parallel System Solving

#pragma omp parallel private(thread_id)...
#pragma omp for
for k=1 to Nx:

R

UpttL

if (thread_id = 0)

boundary condition...
endif

endfor

#pragma omp for

for k=1 to Nx:
update hy, Uf

endfor

endwhile

Y
END

Figure 2. A numerical algorithm for solving (7) in parallel.

Here, the numerical algorithm in parallel is given in two areas, in serial and parallel computing.
As shown in Figure 2, serial computing can be done in the initialization process of Uy and in
defining CFL condition. Since these two processes are not fit in parallel computing. Meanwhile,
parallel computing with OpenMP can be started in the inner loop stage, which is to compute (7)
by defining the water height and velocity variable. Note that, the numerical algorithm in serial is
similar to the Figure 2, where OpenMP is not applied in the parallel area.
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4. Numerical Results and Parallel performances

To obtain results of numerical simulation and parallel implementation, the following specification
of the computer is given in Table 1.

Table 1. The computer specifications for numerical simulation and parallel implementation

Name Type

Operating System Centos 6.5

Processors AMD 2 socket @4 cores
RAM 8 GB

4.1. Numerical Simulation of Dry and Wet Dambreak

Dambreak problem is very popular in numerical simulation of SWE. This problem produces shock
phenomena, which is a big challenge for the numerical scheme to tackle discontinuity solution
[14]. Here two problems are given in dry-wet bed of dambreak. The following initial configuration
of dambreak in dry bed problem in the spatial domain [0, 1] is given as follows

0, ifz>05
hz,0)=4 7= 14
(,0) {1, otherwise ’ (14)
h(z,0)u(x,0) = 0. (15)

Meanwhile, for wet dambreak problem is shown as

0.2, ifx>05
h(z,0)=4 "% "= 1
(2,0) {1, otherwise ’ (18)
h(z,0)u(x,0) = 0. (17)

The difference between dry and wet bed simulation is located on the right side of the dam wall (in
this case at x = 0.5). Numerical results of dambreak simulation with & and « profile are shown in
Figure 3.

1 Net:be
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Figure 3. Numerical simulation of dry and wet bed at simulation time 7' = 0.1 s.

As can be shown in Figure 3, the results of numerical simulation of the dry-wet bed are well
elaborated. These results are similar to the analytical solution of dry-bed dam-break simulation
by SWASHES software, which can be found in [16]. Here in Figure 3 (left), the water height profile
for the wet-bed produces shock near = = 0.8 due to different energy of different water height. This
phenomenon is satisfying Rankine-Hugoniot relation in mathematical observation [14].



LONTAR KOMPUTER VOL. 11, NO. 1 APRIL 2020 p-ISSN 2088-1541
DOI : 10.24843/LKJITI.2020.v11.i01.p01 e-ISSN 2541-5832
Accredited B by RISTEKDIKTI Decree No. 51/E/KPT/2017

4.2. Parallel Implementation

In this section, the performance of OpenMP for simulating dambreak problems is given. First,
the comparison of CPU time for both numerical simulations (wet and dry dam-break) can be
seen in Figure 4. Moreover, serial and parallel of CPU time are shown for both problems. Here,
several numbers of grid size are elaborated to see OpenMP performance, in this case N, €
{200, 400, 800, 1600, 3200, 64000} .

100 T N |Y T / 100 T . |Y T
serial —— serial ——
90 parallel — = — / 90 parallel — = — /
80 80
Y. § / A
70 70 =
[0 7 [} / 7z
g % / . g % / g
E 50 / // E 50 / //
(@) 40 7 O 40
30 7 30
20 / o 20 / w’.
10 e e 10 /- e
0 ..4/;:/— - 0 .A/— -
0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000
Nx Nx

Figure 4. Performance result: CPU time in serial and parallel for dry (left) and wet (right) dam-
break.

Here in parallel implementation, the number of the processor for computing is eight cores. From
Figure 4, a similar profile of CPU time can be seen for both numerical simulations. However, it can
be seen that for both problems, similar CPU time in serial computing with grids number N, = 3600
and in parallel computing with V, = 64000 can be seen. This can be observed that the OpenMP
platform is successfully applied, and it can reduce the computational cost of serial code.
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Figure 5. Performance result: Speedup (left) and Efficiency (right) of dry-wet dam-break.

Another parallel performance metrics, speedup, and efficiency are shown in Figure 5. These
performance metrics are used to see how fast and efficient parallel computing in reducing the
computational cost. As shown in Figure 5 (left), the speedup of parallel computing for both prob-
lems is reaching four times of serial computing. Moreover, since eight cores are used in this
experiment, then the efficiency of parallel computing is approximately 51%, which is shown in Fig-
ure 5 (right). This means that only 51% of the average computational cost in serial code can be
reduced. Since as we can see in the numerical algorithm of parallel (see Figure 2 for more detail),
not all areas of computation can be parallelized. Some areas are still shown in serial computation.
These performances are obtained from equations (12) and (13).



LONTAR KOMPUTER VOL. 11, NO. 1 APRIL 2020 p-ISSN 2088-1541
DOI : 10.24843/LKJITI.2020.v11.i01.p01 e-ISSN 2541-5832
Accredited B by RISTEKDIKTI Decree No. 51/E/KPT/2017

330 T

pood| Nx=1600 ——— | 330 F Nx=1600 —— ]
Nx=3200 —e— 300 Nx=3200 —e—
270 Nx=6400 1 270 Nx=6400 .
240 240
o 210 @ 210
£ 180 £ 180
T 150 7 150
O 120 © 120
90 90 .
q
60 \\ID\ 60 No—__
Sg A, e 38 —L ——— ]
012 3 456 7 89 012 3 456 7 89
Number of Processors Number of Processors

Figure 6. The CPU time for some numbers of core in dry (left) and wet (right) bed dam-break.

For another addition, numerical simulation of parallel computing sung several numbers of cores
(2, 3, 4, 8) are also elaborated. The results in dry wet dam-break problems can be seen in Figure
6. As shown in Figure 6, the increasing number of cores from 2 to 8, resulting in decreasing of
CPU time. Indeed, the increasing number of cores causing some tasks are executed faster than
using the low number of cores. And this result is shown for both problems. Indeed from Figure
6, an increasing number of cores into large numbers could not guarantee CPU time is always
decreasing since efficiency factor becomes an obstacle in multicore parallel programming.

5. Conclusion

Parallel computing performances for simulating dry-wet dam-break problem using OpenMP and
shallow water equation have been done. Two numerical simulations of the dam-break problem
also have been well elaborated. Here, OpenMP is shown satisfying to reduce CPU time in several
numbers of grid in simulation. Speedup of simulation using parallel computing is shown able to
reach four times of serial computing. Moreover, the efficiency of numerical simulation using eight
cores is obtained approximately 51%, with the number of the grid is N, = 6400.
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