
LONTAR KOMPUTER VOL. 9, NO. 3 DECEMBER 2018 p-ISSN 2088-1541
DOI : 10.24843/LKJITI.2018.v09.i03.p02 e-ISSN 2541-5832

Accredited B by RISTEKDIKTI Decree No. 51/E/KPT/2017

124

Implementation of Parallel Processing on Multi-Object
Recognition Software

Midriem Mirdanies

Research Center for Electrical Power and Mechatronics, Indonesian Institute of Sciences (LIPI)

Komp LIPI Bandung, Jl. Sangkuriang, Gd. 20. Lt. 2, Bandung 40135, Indonesia
midr001@lipi.go.id

Abstract

Multi-object recognition software on Remote Controlled Weapon Station (RCWS) had been
implemented in previous paper using Scale Invariant Feature Transform (SIFT) and Speeded
Up Robust Features (SURF) methods, but the processing time in one cycle is quite slow so it is
need to be optimized using parallel processing. In this paper, implementation of parallel
processing on multi-object recognition software has been done on a multicore processor. The
Openmp Application Programming Interface (API), C programming language, and Visual studio
Integrated Development Environment (IDE) is used to implement the parallel processing in this
paper. The parallel processing was implemented in the for loop of the matching process
between the capturing object from the camera and the database under two conditions, i.e., the
original of the for loop syntax and after optimization of the for loop syntax. Experiments have
been done on the core processor i7-4790 @ 3.60Ghz, 8 GB DDR3 of memory, Windows 8.1 OS
using two, four, six, and eight cores to recognize one, two, three and four objects at once using
SIFT and SURF methods. Based on the experiments, it was found that the processing time in
parallel is faster than sequential process, where the fastest of the processing time is obtained
after optimization in the loop syntax, with the processing time in recognizing one to four objects
using SIFT method is 927.13 ms (8 core), 1019.31 ms (6 core), 1190.72 ms (8 core), and
1283.05 ms (4 core), where the sequential processing time in recognizing one to four objects is
1067.35 ms, 1164.78 ms, 1352.93 ms, and 1497.35 ms, while the processing time in
recognizing one to four objects using SURF method is 1157.13 ms (8 core), 1517.83 ms (6
core), 1572.14 ms (4 core), and 1472.64 ms (6 core), where the sequential processing time in
recognizing one to four objects is 5635.99 ms, 6268.47 ms, 3256.63 ms, dan 3883.78 ms.

Keywords: Parallel processing, Multicore, Object recognition, RCWS, C language

1. Introduction

The image processing applications are the application that requires a high specification
computer or parallel processing techniques to speed up the processing time, especially in
applications that use a complex algorithms or methods. Some publication about image
processing have been reported, Park et al. have implemented the direct calculation of inter-
particle distance in suspension by image processing using monte carlo method [1], Saleem et
al. explain a comparison of feature points method on multisensor images [2], Husin et al. [3] on
the poisonous shrimp detection system for litopenaeus vannamei using k-Nearest Neighbor (k-
NN) method, and Mirdanies et al. [4] has also successfully implemented the multi-object object
recognition software on Remote Controlled Weapon Station (RCWS) using Scale Invariant
Feature Transform (SIFT) and Speeded Up Robust Features (SURF) methods.

Particularly in the publication of mirdanies et al. [4], the application program created has been
divided into three parts i.e. reading data from kinect and simulating the results, object
recognition process, and data transfer to the ballistic computer, where each part communicate
using shared memory. This technique is effective to speed up the process and avoiding any
collision or delay, because it is not necessary to wait the other unfinished processes. However,
the object recognition process is still quite slow because the process runs online or real-time to
match many data at once. Based on this, it is necessary to optimize the object recognition
process using parallel processing techniques.

LONTAR KOMPUTER VOL. 9, NO. 3 DECEMBER 2018 p-ISSN 2088-1541
DOI : 10.24843/LKJITI.2018.v09.i03.p02 e-ISSN 2541-5832

Accredited B by RISTEKDIKTI Decree No. 51/E/KPT/2017

125

Parallel processing can be performed on multiprocessor or multicore using Distributed Memory
Processing (DMP) or Shared Memory Processing (SMP). The Application Programming
Interface (API) that can be used is Message Passing Interface (MPI) and openmp [5][6][7].
Several studies of parallel processing of DMP type have been done by Pinho that implements
object-orientation in distributed-memory parallelism called Object-Oriented Parallel
Programming (OOPP) [8], and Oger had done parallel processing using distributed memory
parallelization technique on Smoothed Particle Hydrodynamics (SPH) [9]. The research on
parallel processing with the SMP type has also been done by Phillips that implements
classification algorithms on remote sensing (multispectral) [10], and Amritsar on dense
particulate system simulations with computational fluid dynamic (CFD) using openmp [11].

Research on parallel processing by utilizing multicore processors has also been done by
Mirdanies using QtConcurrent API with Integrated Development Environment (IDE) using Qt
Creator, where the method was used is divided a complex process into two new sub-processes,
and each process runs on a different thread [12].

In this paper, a multi-object recognition software had been optimized [4] using SMP type of the
parallel processing on multicore processors. The method and API used in this paper are
different from the previous article [12]. The Parallelization method is done in the loop process
and API is using openmp. In addition, the programming language was used is c language with
Visual studio IDE. The experiments have been done on two, four, six, and eight processor cores
using SIFT and SURF methods to see the processing time on the i7-4790 core processor [13].

2. Research Methods

Diagram of multi-object recognition software in this paper can be seen in Figure 1.

Figure 1. Diagram of the multi-object recognition software

Figure 1 shows a diagram of a multi-object recognition software, where the camera was used in
this paper is a c720p logitech camera which mounted on a gun barrel, it can be seen in Figure
2.

Figure 2. Logitech c720p camera

The Central Processing Unit (CPU) was used in this research is HP Pavilion with specifications:
i7-4790 @ 3.60 GHz core processor, 8GB DDR3, NVidia GeForce GTX 745, 1T HDD, and
windows 8.1. The processor was used in this study has four cores with the number of threads is
eight thread that can be seen in Figure 3.

LONTAR KOMPUTER VOL. 9, NO. 3 DECEMBER 2018 p-ISSN 2088-1541
DOI : 10.24843/LKJITI.2018.v09.i03.p02 e-ISSN 2541-5832

Accredited B by RISTEKDIKTI Decree No. 51/E/KPT/2017

126

Figure 3. Specification of intel i7-4790 processor using CPU-Z [14]

The multi-object recognition software using SIFT and SURF methods that have been developed
can be seen in Figure 4.

Figure 4. Multi-object recognition software

Figure 4 shows the display of the multi-object recognition software to recognize three objects at
once. The objects were used in this paper are seven toys, i.e. wrecker, concrete mixer, blue
sedan, green sedan, white sedan, wheel loader, and motorcycle. The display of the seven
objects used can be seen in Figure 5.

LONTAR KOMPUTER VOL. 9, NO. 3 DECEMBER 2018 p-ISSN 2088-1541
DOI : 10.24843/LKJITI.2018.v09.i03.p02 e-ISSN 2541-5832

Accredited B by RISTEKDIKTI Decree No. 51/E/KPT/2017

127

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 5. The objects were used in the paper: (a) wrecker; (b) concrete mixer; (c) blue sedan;

(d) green sedan; (e) white sedan; (f) wheel loader; and (g) motorcycle

The display of each object from several sides and different distances is stored in the “.yml” file,
with the amount of data in each object is 50 data. The details of the objects can be seen in
Table 1.

LONTAR KOMPUTER VOL. 9, NO. 3 DECEMBER 2018 p-ISSN 2088-1541
DOI : 10.24843/LKJITI.2018.v09.i03.p02 e-ISSN 2541-5832

Accredited B by RISTEKDIKTI Decree No. 51/E/KPT/2017

128

Table 1. Objects database

No File name Object Method

The amount of data

Object
name

Images Keypoints Descriptors

1 sift_mobil_derek.
yml

Wrecker SIFT 1 50 50 50

2 surf_mobil_derek
.yml

Wrecker SURF 1 50 50 50

3 sift_mobil_molen.
yml

Concrete
mixer

SIFT 1 50 50 50

4 surf_mobil_mole
n.yml

Concrete
mixer

SURF 1 50 50 50

5 sift_mobil_sedan
_biru.yml

a blue
sedan

SIFT 1 50 50 50

6 surf_mobil_seda
n_biru.yml

a blue
sedan

SURF 1 50 50 50

7 sift_mobil_sedan
_hijau.yml

a green
sedan

SIFT 1 50 50 50

8 surf_mobil_seda
n_hijau.yml

a green
sedan

SURF 1 50 50 50

9 sift_mobil_sedan
_putih.yml

a white
sedan

SIFT 1 50 50 50

10 surf_mobil_seda
n_putih.yml

a white
sedan

SURF 1 50 50 50

11 sift_mobil_sekop.
yml

Wheel
loader

SIFT 1 50 50 50

12 surf_mobil_sekop
.yml

Wheel
loader

SURF 1 50 50 50

13 sift_motor_racing
.yml

Motorcycl
e

SIFT 1 50 50 50

14 surf_motor_racin
g.yml

Motorcycl
e

SURF 1 50 50 50

Table 1 shows the file name with the “.yml” extension which contain the object name, images,
keypoints, and object descriptors from various positions and distances. All data were used in
this paper is a new data that different from the previous research and the amount of each object
is 50 pieces which mean more than previous research.

Figure 6 shows the flowchart of a multi-object recognition process using SIFT or SURF method
that run sequentially on one thread only. The process to detect the number of keypoint from
camera images and databases, the process of matching between descriptor of the camera
images and database, determine the center of detected objects, and the process to calculate
the keypoint and image descriptor of the camera are the realtime process of the matching data
of all objects in the database using two for loops, first, for each file, and second, for each object
in the file. In this research, “batas_min_matching” parameter of SIFT method is 70, and the
SURF method is 25. The parameters is the detection accuracy of each method, so if the
parameters are less than or equal to that value then one object can be detected more than once
and the coordinates of the object become less precise.

LONTAR KOMPUTER VOL. 9, NO. 3 DECEMBER 2018 p-ISSN 2088-1541
DOI : 10.24843/LKJITI.2018.v09.i03.p02 e-ISSN 2541-5832

Accredited B by RISTEKDIKTI Decree No. 51/E/KPT/2017

129

Figure 6. Flowchart of the multi-object recognition sequentially

LONTAR KOMPUTER VOL. 9, NO. 3 DECEMBER 2018 p-ISSN 2088-1541
DOI : 10.24843/LKJITI.2018.v09.i03.p02 e-ISSN 2541-5832

Accredited B by RISTEKDIKTI Decree No. 51/E/KPT/2017

130

The processing time of multi-object recognition sequentially using SIFT and SURF methods can
be seen in Figure 7.

Figure 7. The processing time of multi-object recognition sequentially using SIFT and SURF
methods

Figure 7 shows the average time graph of the multi-object recognition process sequentially
using SIFT and SURF method to detect one to four objects at a time. The graph which is using
red dashed line is SURF, and blue solid line is SIFT. The number of experiments in each object
recognition process is 60 times, with ten different object positions and each object position is
repeated six times. The processing time in recognizing one to four objects with SIFT method is
1067.35 ms, 1164.78 ms, 1352.93 ms, and 1497.35 ms, while the processing time in
recognizing one to four objects by SURF method is 5635.99 ms, 6268.47 ms, 3256.63 ms, and
3883.78 ms. The processing time of object recognition using SIFT method is more linear than
SURF method, it is related to several factors as the number of keypoints / descriptors, and the
order of images in the database (beginning, middle or end of the database).

The loop of the multi-object recognition flowchart in Figure 6 will be processed in parallel using
the openmp API version 1 that was default integrated in the visual studio. Openmp version 1
has the disadvantage, it is not able to execute more than one loop at a time, while the loop used
in this paper is two for loop. Because of that, parallel processing is tried to be implemented in
each loop. First, The parallel processing experiments have been performed on the first for loop
as follows.

#pragma omp parallel for schedule(dynamic,1)

for (jml = 0; jml < sizeof(nama_file_yml) / sizeof(string); jml++) {

 for (a = 0; a < 50; a++) {

/* The process of detecting the number of keypoint images

from cameras and databases, the process matching between the

descriptor of the camera images and database, determine the

center of detected objects, until the process of calculating

keypoint and image descriptor from camera */

 }

}

0

1000

2000

3000

4000

5000

6000

7000

1 2 3 4

P
ro

ce
ss

in
g

ti
m

e
 (

m
s)

number of objects

SURF

SIFT

LONTAR KOMPUTER VOL. 9, NO. 3 DECEMBER 2018 p-ISSN 2088-1541
DOI : 10.24843/LKJITI.2018.v09.i03.p02 e-ISSN 2541-5832

Accredited B by RISTEKDIKTI Decree No. 51/E/KPT/2017

131

The experiment shows that the program can not be executed or an error occurs, it is related to a
bug in version 1 openmp. Second, parallel processing experiments have been done on the
second for loop which shows in a box with a red dashed line in Figure 6, the syntax can be seen
as follows.

for (jml = 0; jml < sizeof(nama_file_yml) / sizeof(string); jml++) {

 #pragma omp parallel for schedule(dynamic,1)

 for (a = 0; a < 50; a++) {

/* The process of detecting the number of keypoint images

from cameras and databases, the process matching between the

descriptor of the camera images and database, determine the

center of detected objects, until the process of calculating

keypoint and image descriptor from camera */

 }

}

The experiments show that the program can run well which the results can be seen in Chapter
3. Illustration of the parallel process on the for loop using the core i7-4790 processor can be
seen in Figure 8.

Figure 8. Illustration of the parallel process on the for loop using the core i7-4790 processor

Figure 8 shows an example of a parallel processing illustration of each for loop iteration on eight
thread core i7-4790 processor which assuming that no other program is running on each thread.
Experiments have also been performed on the for loop after optimization of the for loop syntax,
which can be seen in Figure 9.

LONTAR KOMPUTER VOL. 9, NO. 3 DECEMBER 2018 p-ISSN 2088-1541
DOI : 10.24843/LKJITI.2018.v09.i03.p02 e-ISSN 2541-5832

Accredited B by RISTEKDIKTI Decree No. 51/E/KPT/2017

132

Figure 9. Flowchart of multi-object recognition after the for loop syntax have optimized

LONTAR KOMPUTER VOL. 9, NO. 3 DECEMBER 2018 p-ISSN 2088-1541
DOI : 10.24843/LKJITI.2018.v09.i03.p02 e-ISSN 2541-5832

Accredited B by RISTEKDIKTI Decree No. 51/E/KPT/2017

133

The box with the red dashed line in Figure 9 can be seen that both for loop were used are
combined into one for, which means the number of for loop iterations is equal to the total
number of data files and the contents of each data file. The program syntax can be seen as
follows.

#pragma omp parallel for schedule(dynamic,1)

for (int jml_a = 0; jml_a < (sizeof(nama_file_yml) / sizeof(string)) *

50; jml_a++) {

 int jml = jml_a / 50;

 int a = jml_a % 50;

/* The process of detecting the number of keypoint images from

cameras and databases, the process matching between the

descriptor of the camera images and database, determine the

center of detected objects, until the process of calculating

keypoint and image descriptor from camera */

}

jml is a variable that shows the index of an object file, and a is an index of the contents of each
file. The processing time in this experiments is using high_resolution_clock library with #include
<chrono> header [15].

3. Result and Discussion

When the experiments of the multi-object recognition software run, there are several other
programs that also run on windows 8.1, i.e. windows explorer, sticky notes, visual studio, and
task manager. The experiments have been done to see the CPU load before the multi-object
recognition software runs, and when it runs both on sequential and parallel using the task
manager. The display of CPU load was used before a multi-object recognition program runs can
be seen in Figure 10.

Figure 10. The CPU load before the multi-object recognition software running

Based on the experimental results, it can be seen that the CPU load before the multi-object
recognition software runs is about 2%, when the multi-object recognition program runs
sequentially is about 22%, and when the multi-object recognition program is running in parallel,
the CPU load was used is greater than or equal to 66%, it means that the CPU load is greater
than or equal to 44% compared sequentially.

LONTAR KOMPUTER VOL. 9, NO. 3 DECEMBER 2018 p-ISSN 2088-1541
DOI : 10.24843/LKJITI.2018.v09.i03.p02 e-ISSN 2541-5832

Accredited B by RISTEKDIKTI Decree No. 51/E/KPT/2017

134

The parallel processing time of multi-object recognition using SIFT method, with the original of
the for loop syntax, and after optimization the of the for loop syntax can be seen in Figure 11.

(a)

(b)

Figure 11. The parallel processing time of multi-object recognition using SIFT method using: (a)
the original of the for loop syntax; (b) after optimization of the for loop syntax

Based on Figure 11, it shows that the parallel processing times of multi-object recognition using
SIFT method in two, four, six, and eight cores is faster than sequentially, where the fastest time
is obtained in the condition after optimization of the for loop syntax. The fastest time to
recognize one to four objects is 927.13 ms (8 cores), 1019.31 ms (6 cores), 1190.72 ms (8
cores), and 1283.05 ms (4 cores), or it faster 13.14%, 12.49%, 11.99%, and 14.31% than
sequential process.

800

900

1000

1100

1200

1300

1400

1500

1 2 3 4

P
ro

ce
ss

in
g

ti
m

e
 (

m
s)

number of objects

2 core

4 core

6 core

8 core

800

900

1000

1100

1200

1300

1400

1500

1 2 3 4

P
ro

ce
ss

in
g

ti
m

e
 (

m
s)

number of objects

2 core

4 core

6 core

8 core

LONTAR KOMPUTER VOL. 9, NO. 3 DECEMBER 2018 p-ISSN 2088-1541
DOI : 10.24843/LKJITI.2018.v09.i03.p02 e-ISSN 2541-5832

Accredited B by RISTEKDIKTI Decree No. 51/E/KPT/2017

135

Figure 12 shows the parallel processing time using the SURF method, with the original of the for
loop syntax, and after optimization the of the for loop syntax.

(a)

(b)

Figure 12. The parallel processing time of Multi-object recognition time using SURF method,
using: (a) the original of the for loop syntax; (b) after optimization the of the for loop syntax

Figure 12 shows the parallel processing time of multi-object recognition using SURF method
using two, four, six, and eight cores is also faster than sequential, where the fastest time is
obtained in the condition after optimization of the for loop syntax. The fastest time of recognizing
one to four objects is 1157.13 ms (8 cores), 1517.83 ms (6 cores), 1572.14 ms (4 cores), and
1472.64 ms (6 cores), or it faster 79.47%, 75.79%, 51.73%, and 62.08% than sequential
process.

The processing time after optimization of the for loop syntax is faster than the original of the for
loop syntax because the loop process become optimal. On the original of for loop syntax, only

1000

1500

2000

2500

3000

3500

1 2 3 4

P
ro

ce
ss

in
g

ti
m

e
 (

m
s)

number of objects

2 core

4 core

6 core

8 core

1000

1500

2000

2500

3000

3500

1 2 3 4

P
ro

ce
ss

in
g

ti
m

e
 (

m
s)

number of objects

2 core

4 core

6 core

8 core

LONTAR KOMPUTER VOL. 9, NO. 3 DECEMBER 2018 p-ISSN 2088-1541
DOI : 10.24843/LKJITI.2018.v09.i03.p02 e-ISSN 2541-5832

Accredited B by RISTEKDIKTI Decree No. 51/E/KPT/2017

136

the second loop which is done in parallel, but after optimization of the for loop syntax, both of for
loop are done in parallel.

4. Conclusion

The Parallel processing has been successfully implemented in multi-object recognition software
on SIFT and SURF methods using openmp library in two conditions, first, on the original of the
for loop syntax, and second, after optimization the of the for loop syntax. Based on the
experiments, it is known that the processing time of recognition multi-object in parallel is faster
than sequential process, where the fastest time is obtained in the condition after optimization of
the for loop syntax on both SIFT and SURF method, with processing time in recognizing one to
four objects on SIFT method is 927.13 ms (8 cores), 1019.31 ms (6 cores), 1190.72 ms (8
cores), and 1283.05 ms (4 cores), or it faster 13.14%, 12.49%, 11.99%, and 14.31% than
sequential process, while the SURF method is 1157.13 ms (8 cores), 1517.83 ms (6 cores),
1572.14 ms (4 cores), and 1472.64 ms (6 cores), or it faster 79.47%, 75.79%, 51.73%, and
62.08% than sequential process.

Acknowledgments

The author would like to thank the Research Center for Electrical Power and Mechatronics -
LIPI especially the Industrial Automation Research Group which has supported this research.

References
[1] D. Y. Park, “Direct calculation of inter-particle distance in suspension by image

processing,” Powder Technology, vol. 330, pp. 252–258, May 2018.
[2] S. Saleem et al., “Feature points for multisensor images,” Computer & Electrical

Engineering, vol. 62, pp. 511–523, Aug. 2017.
[3] A. Husin et al., “Poisonous Shrimp Detection System for Litopenaeus Vannamei using k-

Nearest Neighbor Method,” Lontar Komputer. Jurnal Ilmiah Teknologi Informasi, vol. 9, no.
1, pp. 20–27, Apr. 2018.

[4] M. Mirdanies et al., “Object Recognition System in Remote Controlled Weapon Station
using SIFT and SURF Methods,” Journal Mechatronics, Electrical Power, Vehicular
Technology, vol. 4, no. 2, p. 99, Dec. 2013.

[5] T. Sterling et al., High performance computing : modern systems and practices.
Cambridge: Morgan Kaufmann, 2018.

[6] B. Schmidt et al., Parallel programming : concepts and practice. Cambridge: Morgan
Kaufmann, 2017.

[7] S. E. Oh and J.-W. Hong, “Parallelization of a finite element Fortran code using OpenMP
library,” Advance in Engineering Software, vol. 104, pp. 28–37, Feb. 2017.

[8] E. G. Pinho and F. H. de Carvalho, “An object-oriented parallel programming language for
distributed-memory parallel computing platforms,” Science of Computer Program., vol. 80,
pp. 65–90, Feb. 2014.

[9] G. Oger et al., “On distributed memory MPI-based parallelization of SPH codes in massive
HPC context,” Computer Physics Communication, vol. 200, pp. 1–14, Mar. 2016.

[10] R. D. Phillips et al., “An SMP soft classification algorithm for remote sensing,” Computer &
Geosciences, vol. 68, pp. 73–80, Jul. 2014.

[11] A. Amritkar et al., “Efficient parallel CFD-DEM simulations using OpenMP,” Journal of
Computational Physics., vol. 256, pp. 501–519, Jan. 2014.

[12] M. Mirdanies, “Optimization of Robot Telemonitoring System Software using multi-thread
method,” INKOM Jurnal, vol. 11, no. 1, pp. 15–24, May 2018.

[13] Intel Corporation, “Intel® Core
TM

 i7-4790 Processor (8M Cache, up to 4.00 GHz) Product
Specifications.” [Online]. Available: https://ark.intel.com/products/80806/Intel-Core-i7-4790-
Processor-8M-Cache-up-to-4_00-GHz. [Accessed: 07-May-2018].

[14] CPUID, “CPU-Z | Softwares | CPUID.” [Online]. Available:
https://www.cpuid.com/softwares/cpu-z.html. [Accessed: 07-May-2018].

[15] cppreference.com, “std::clock - cppreference.com.” [Online]. Available:
http://en.cppreference.com/w/cpp/chrono/c/clock. [Accessed: 07-May-2018].

