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Abstract 
 

The agricultural industry plays a vital role in the global demand for food production. Along with 
population growth, there is an increasing need for efficient farming practices that can maximize 
crop yields. Conventional methods of harvesting lettuce often rely on manual labor, which can 
be time-consuming, labor-intensive, and prone to human error. These challenges lead to 
research into automation technology, such as robotics, to improve harvest efficiency and reduce 
reliance on human intervention. Deep learning-based object detection models have shown 
impressive success in various computer vision tasks, such as object recognition. RetinaNet 
model can be trained to identify and localize lettuce accurately. However, the pre-trained 
models must be fine-tuned to adapt to the specific characteristics of lettuce, such as shape, 
size, and occlusion, to deploy object recognition models in real-world agricultural scenarios. 
Fine-tuning the models using lettuce-specific datasets can improve their accuracy and 
robustness for detecting and localizing lettuce. The data acquired for RetinaNet has the highest 
accuracy of 0.782, recall of 0.844, f1-score of 0.875, and mAP of 0,962. Metrics evaluate that 
the higher the score, the better the model performs. 

  
Keywords: RetinaNet, computer vision, fine-tuned model, agricultural, deep learning 
 
  
1. Introduction 

The agricultural industry faces the challenge of meeting the increasing global demand for food 
production while minimizing resources[1]. Conventional methods of lettuce harvesting rely on 
manual labor[2], which can be time-consuming and prone to human error. Research has 
focused on automation technology, such as robotics, to improve harvest efficiency and reduce 
reliance on human intervention. Deep learning-based object detection models have succeeded 
in various computer vision tasks, including object recognition and localization[3]. However, 
these models must be fine-tuned to adapt to the specific characteristics of lettuce plants. 

Computer vision has many essential tasks, including object detection. Object recognition is 

crucial, yet the two differ significantly [4]. The primary difference is that object detection focuses 
on determining the location of objects using bounding boxes[5]. In contrast, object recognition 
takes an additional step by categorizing and labeling the identified objects based on predefined 
classes[6]. Both components are crucial in computer vision applications, providing nuanced 
insights into the visual content under scrutiny. 

In deep learning, convolutional neural networks (CNNs) are often used for image data analysis, 

including tasks like segmentation, object detection, and image classification. Object detection 
models can generally be categorized into two-stage and one-stage approaches. Two-stage 
object detection involves using a selective search algorithm to generate region proposals for the 
target object, which are then classified using a CNN. While achieving high detection accuracy, 
this approach requires longer training times and reduces detection speed. Researchers have 
been exploring using AI-based object detection for lettuce, aiming to minimize costs and labor 
while increasing efficiency in lettuce harvesting. Previous studies have investigated the 
detection of abnormal leaves in hydroponic lettuce using machine learning algorithms such as 
Multinomial Logistic Regression (MLR) and Support Vector Machine (SVM)[7]. Additionally, 
researchers have developed an automatic iceberg lettuce harvesting robot [8], utilizing a vision 
system for lettuce localization and classification. 
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This research aims to develop a fine-tuned model that can recognize lettuce in real-time 
situations. The researchers built a fine-tuned model using several models like RetinaNet, which 
is a pre-trained model. The results are then analyzed and evaluated, comparing data such as 
F1 score recall in deep learning. Convolutional neural networks (CNNs) are often used for 
image data analysis, including tasks like segmentation, object detection, and image 
classification. Object detection models can generally be categorized into two-stage and one-
stage approaches. Two-stage object detection involves using a selective search algorithm to 
generate region proposals for the target object, which are then classified using a CNN. While 
achieving high detection accuracy, this approach requires longer training times and reduces 
detection speed. Researchers have been exploring using AI-based object detection for lettuce, 
aiming to minimize costs and labor while increasing efficiency in lettuce harvesting. Previous 
studies have investigated the detection of abnormal leaves in hydroponic lettuce using machine 
learning algorithms such as Multinomial Logistic Regression (MLR) and Support Vector Machine 
(SVM). Additionally, classification, Precision, accuracy, and ROCAUC. By incorporating these 
metrics, the researchers aim to gain valuable insights into the efficiency of the trained model in 
detecting lettuce instances accurately. 

Research related to the article "A Deep Learning Approach for Weed Detection in Lettuce Crops 
Using Multispectral Images" uses drones and captures RGB images and uses three models 
such as HOG-SVM, YOLO, and R-CNN using evaluation metrics such as accuracy, precision, 
and F1-score, by using evaluation metrics we can evaluate the model, whether the model 
results are efficient[9]. In this research, we add a fine-tuning method that can take time to train 
the model, and it is hoped that the model can detect objects (lettuce) in real-time. 

 
2. Research Methods 
 

 
 

Figure 1. Block Diagram 
 

Figure 1 depicts the workflow for real-time object detection using RetinaNet. The process starts 
with data preparation (collecting, resizing, and augmenting the dataset). A pre-trained RetinaNet 
model serves as the foundation. This model is fine-tuned using the prepared data. The tuned 
model (precision, recall, mAP) is then evaluated on the validation dataset. Next, 
hyperparameters are adjusted to optimize real-time performance, followed by further 
optimization for real-time inference. Finally, the tuned and optimized model is integrated into the 
real-time system, and the entire process is documented. This results in a real-time system with 
high-accuracy object detection capabilities. 

2.1.  Fine-tuning model 

Fine-tuning in object detection refers to taking a pre-trained model trained on a large dataset 
and further teaching it on a smaller task-specific dataset[10]. That helps the model adapt to the 
specific object classes and variations in the target task. The model can learn to detect and 
localize objects more accurately in a particular job by initializing the model with pre-trained 
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weights and fine-tuning it on the new dataset. Fine-tune processed by loading a pre-trained 
model and modifying its output layer to accommodate a custom number of classes. Initializes an 
optimizer using stochastic gradient descent (SGD) with a learning rate of 0.001, momentum of 
0.9, and weight decay of 0.0005. This optimizer is crucial for optimizing the model parameters 
during the training process on a custom dataset, representing a key element in the fine-tuning 
procedure. Fine-tuning improves the model's performance compared to training from scratch, 
especially when the target dataset is small or different from the pre-training dataset. 

2.2. Pytorch 

In the context of object detection, PyTorch provides the torchvision library, which offers various 
well-known pre-trained models such as Faster R-CNN[11] and RetinaNet. This library also 
provides functions for data processing [12], augmentation, and dataset preparation for training 
and evaluating object detection models [13]. Furthermore, PyTorch facilitates the training and 
validation process of object detection models by providing classes such as optimizers, loss 
functions, and schedulers that can be used to optimize and fine-tune models. The primary use 
case for PyTorch is training machine learning models on GPU. 

2.2.1. RetinaNet 

RetinaNet is a single, unified network comprising a backbone network and two task-specific 
subnetworks [14]. It is designed to overcome the limitations of earlier models that need help 
accurately detecting objects at large and small scales. 

 

 
 

Figure 2. RetinaNet: A Simple One-Stage Object Detector with Focal Loss and FPN Backbone 
 
RetinaNet utilizes a Feature Pyramid Network (FPN) to extract multiple-scale features from a 
convolutional neural network[15]. Allowing the model to capture fine-grained details of small 
objects while maintaining contextual information for larger objects [16]. The FPN generates a 
set of feature maps with different resolutions, forming a pyramid-like structure, as shown in 
Figure 2. 

RetinaNet object detection is performed using a two-branch architecture. The first branch 
predicts the presence of an object (foreground/background classification) at each spatial 
location on the feature maps. This branch uses a focal loss to address the issue of class 
imbalance, where many areas are in the background. The focal loss assigns higher weights to 
complex examples, which helps to focus the training on challenging samples. 

2.3. Evaluation Method 

In evaluating object detection methods, many essential ways are used to analyze model 
performance [17], such as recall accuracy precision IoU and f1 score. 

2.3.1. Evaluation Metrics 

The evaluation metrics visualize an object detection model's predicted results [9] by comparing 
them with the actual data labels  [18]. 

Accuracy: Accuracy is a metric that measures the percentage of data the model correctly 

predicts as positive or negative [19]. 
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 Accuracy =
(TP+TN)

(TP+TN+FP+FN)
        (1) 

 
Recall: (Recall, Sensitivity) measures a model's ability to detect all actual positive instances of 
an object from the total number of positive samples [20]. 

 

Recall =
(TP)

(TP+FN)
         (2) 

 
Precision: Precision measures how accurately the model identifies the actual object instance of 
all the cases it predicts as an object [21]. 
 

Precision =
(TP+TN)

(TP+FP)
        (3) 

F1-score: F1-score provides an overview of the balance between detecting as many actual 
objects as possible (Recall) and providing the correct predictions for these objects (Precision) 
 

F1 − score = 2 ∗
(Precision∗Recall)

(Precision+Recall)
       (4) 

 
Intersection over Union:  Intersection over Union (IoU) is a metric that measures the overlap 
between predicted and ground truth bounding boxes in object detection tasks[22]. 
 

IoU =
TP

(TP+FP+FN)
         (5) 

2.3.2. Train loss 

Train Loss measures how closely the model meets the desired goal during training. This metric 
calculates the difference between the model's predicted and actual values in the trained 
data[23]. The main goal is to optimize the training loss so the model can learn from the data and 
get a smaller value of the training loss the better the model is trained. 
 

 
 

Figure 3. Example of Train Loss 
 

As shown in Figure 3, The decreasing train loss indicates that the model's performance is 
improving over time during the training process. As the model iteratively learns from the training 
data, it becomes more effective in making accurate predictions and reducing errors. This 
decrease in train loss signifies that the model effectively adjusts its parameters to fit the data 
better, leading to improved performance and increased accuracy. A decreasing train loss is a 
positive sign, showing that the model is converging towards better results and becoming more 
proficient in its task. 

2.3.3. Validation loss 

Validation Loss measures how well a model performs on validation data not used to train it. This 
helps assess how well the model generalizes and accurately predicts new, unseen data. 
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Validation loss is also used to monitor overfitting. In this condition, the model 'remembers' too 
much training data and cannot predict new data well. 

 

 
 

Figure 4. Example of Validation Loss 
 

As shown in Figure 4, The downward trend in validation loss indicates that the model is not 
overfitting the training data, meaning that it not only "memorizes" the training data but can also 
find more general patterns and apply them to new data. The slower the validation loss 
decreases, the better the model can generalize to data that has never been seen before, and 
this is an indicator of the excellent quality of the model that has been trained. 

2.3.4. AUROC 

AUROC (Area Under the Receiver Operating Characteristic Curve) is an evaluation metric used 
to measure the performance of a classification model [24], particularly in object detection 
problems. The ROC (Receiver Operating Characteristic) curve visualizes the model's 
performance, distinguishing between positive and negative classes by varying the prediction 
threshold. A higher AUROC value indicates the model's ability to differentiate between positive 
and negative categories. AUROC helps compare different models' performance and select the 
most suitable model for object detection tasks[25]. 
 

AUROC = ∫ TPR dFPR        (6) 

 

 
 

Figure 5. Schematic Diagram of ROC Curve 
 

As shown in Figure 5, The ROC Curve graph is handy for understanding the trade-off between 
TPR and FPR in various scenarios. It helps choose the optimal threshold for a classification 
model based on the application's specific needs. The larger the area under the ROC curve, the 
better the model's performance at discriminating between positive and negative classes. 

2.3.5. Inference Object Detection 

Inference uses the trained model to detect objects in new images or data by generating 
predictions about the location and class of things in the image or data [26]. 
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Figure 6. Inference of Lettuce 
 

As shown in Figure 6, the lettuce inference aims to identify lettuce leaves in the image and 
provide a bounding box for each detected leaf. It can be used in various applications, such as 
agricultural analysis, vegetable garden surveillance, or any other application that requires 
identifying and detecting objects in images. 

 

3. Experimental Result and Discussion 

This section shows the results of the experiments related to evaluating metrics, train loss, 

validation loss, and inference performance on images. Precision, recall, and F1 scores are also 
assessed. Experiments also evaluate train and validation loss to understand the model's 
learning. Furthermore, the model's performance on the image inference task is evaluated using 
Intersection over Union (IoU) to measure the extent to which the model predictions match the 
ground truth. 

3.1. Experiments 

In this experiment, we used the lettuce datasets obtained by taking photos independently and 
used them as training data media. In contrast, we used data circulating online, such as the 
Kaggle and COCO (Common Objects in Context) datasets, for validation.  

3.1.1. Dataset  

A dataset is a collection of data used to train and test object detection models in object 
detection. It consists of images or videos containing target objects to be detected and 
annotations that provide information about the object's position and class in the image. The 
number of datasets used to train the model is 630 images. 
 

 
 

Figure 7. Dataset of Lettuce 
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As shown in Figure 7, a dataset in the context of object detection refers to a collection of data 
used for training and testing object detection models. It consists of images containing target 

objects and annotations that must be detected. In this research, using an average in 
validation appears to serve the purpose of calculating the average loss at each validation 
iteration to monitor and evaluate the model's performance in real time. This is noteworthy 
even though the dataset is evenly split 50:50 between training and validation, emphasizing 
the importance of continuous performance evaluation during training. 

3.1.2. Annotations 

Annotations are the information associated with each object in the images or videos. 
Annotations include bounding box coordinates surrounding the thing, class labels, and other 
attributes such as pose or object landmarks [27]. Annotations are essential for training object 
recognition models to recognize and learn the characteristics of target objects. 
 

 
 

Figure 8. Annotate for lettuce datasets. 
 

As shown in Figure 8. Object detection datasets can be created manually with human 
annotators who visually mark the objects in the images or videos. There are also popular pre-
existing object datasets created and shared by the research community, such as COCO, Pascal 
VOC (Visual Object Classes) [28], and Open Images. These datasets are often used as 
benchmarks in the research and development of object detection models. This research uses 
630 datasets and using three classes. Such as "background," "lettuce," and "no lettuce." 
Including the "background" class during the fine-tuning process enables the model to distinguish 
between the objects it wants to detect and the unrelated background areas [29]. By 
incorporating the background class, the model becomes proficient in differentiating relevant 
things from their surrounding context, resulting in more precise and effective object detection. 

3.1.3. Develop Environment 

The program used in this experiment was written in Python (Version 3.9.16), Matplotlib (Version 
3.7.1), and Albumentations (Version 1.3.0), which are commonly used libraries for the 
development and analysis of machine learning models. PyTorch (Version 2.0.0+cu117) is used 
for neural network model building and training, while Matplotlib (Version 3.7.1) was used for 
data visualization and graph generation. We used a Graphics Processing Unit (GeForce RTX 
2080 Ti, 16GB VRAM) for rendering. OpenCV-Python (Version 4.7.0.72) is useful in image 
processing and computer vision applications. Tqdm (Version 4.65.0) is a helpful library for 
updating the progress bar when iterating in a loop. Pandas (Version 2.0.0), NumPy (Version 
1.24.2), and Pillow (Version 9.3.0) are used for data analysis and manipulation in the form of 
tables or data frames. Scikit-learn (Version 1.2.2) and Scikit-image (Version 0.20.0) are widely 
used libraries for machine learning and statistical modeling, including training, selecting 
features, and evaluating models. 

3.1.4. Experimental settings 

A machine-learning model was constructed using a lettuce image. Acceleration of this training 
using a graphical processing Unit (GPU). Before training, each print is resized to 512 to make 
training more accessible; cross-entropy is used as function loss in this research. We used 
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Stochastic Gradient Descent (SGD)[30] to optimize the model, with a learning rate of 0.001, a 
momentum of 0.9, and a weight decay 0.0005. We trained the model with 500 epochs and 8 
batch sizes for every 100 epochs. We saved the training loss, validation loss, and the model to 
evaluate whether the model has overfitting, underfitting, or other problems for each epoch. 

3.3. Evaluation Result of The RetinaNet Model  

In this research, we developed an object detection model using the RetinaNet model to detect 
lettuce. There are several evaluation matrices that we use in our study this time, such as train 
loss, validation loss, accuracy, recall, Precision, f1-score, mean average precision (mAP), and 
IoU. which provides insight into how well our models learn during the training process. 

3.3.1. Train Loss 

Our observation showed an interesting trend in our train loss during training iterations. If we 
visualize the training loss against the number of iterations, we see that the train loss graph is 
blue and shows a specific pattern. The initial train loss is high and unstable at the beginning of 
the training. However, after a few iterations, the training loss decreases gradually. 
 

 
 

Figure 9. RetinaNet Train Loss for 500 Epochs 
 

As the number of iterations increases, the initially high train loss gradually decreases. This 
gradual decrease in training loss, as shown in Figure 9, indicates that our model successfully 
learns essential patterns in the training data. One hundred until 400 epochs in the figure is a 
marker that train loss divided every 100 epochs until the last of epochs 500. The longer the 
training process lasts, the better our model can generalize and predict accurately. It went up a 
bit but then went down regularly. The decreasing train loss graph indicates that our model 
optimizes the parameters and improves its performance over time. 

3.3.2. Validation Loss 

Validation Loss is a measure of the extent to which our model can generalize and predict with 
high accuracy data that has never been seen before. 
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Figure 10. RetinaNet Validation Loss for 500 Epochs 
 

This gradual decrease in validation loss shows that our model can generalize well to validation 
data. The longer the training process lasts, the better our model can learn the patterns in the 
validation data. As shown in Figure 10, the trend analysis of the validation loss, we can 
conclude that our model successfully performs object detection in the lettuce validation data. 
100 until 400 epochs in the figure is a marker that validation loss divided every 100 epochs until 
the last of epochs 500. The initial high validation loss gradually decreases as the number of 
iterations increases. 

3.3.3. Evaluation Metrics 

This section provides an in-depth analysis of the RetinaNet model's performance for object 
lettuce detection and the implications of the evaluation results for the model's success in lettuce 
object detection over all tasks. 
 
Table 1. Results of Evaluation Metrics 

Test Instances 

Epochs Accuracy AUC Recall Precision F1-score mAP 

100 0.645 0.74 0.625 0.946 0.752 0.95 
300 0.683 0.697 0.917 0.917 0. 792 0.946 
500 0.782 0.698 0.844 0.909 0.875 0.962 

 
Table 2 shows the performance measures of different Epochs models on a single set of 586 
instances. In this table evaluation, the epochs of the "500" model were the best performers 
among the options considered. It achieved an accuracy of 0.782, meaning it could correctly 
classify 78.2% of the objects in the data set. It also showed a high AUC of 0.698, indicating a 
solid ability to discriminate between different classes. 
 
In addition, Epochs "500" showed a high recall value of 0.844, indicating that it successfully 
identified 88.4% of the objects in the data set. The Precision of 0.909 suggests that the model 
achieved a high percentage of true positives among predicted positive instances. Also, the mAP 
got a high score of 0.962, which means the model can achieve better accuracy when 
recognizing the lettuce. Overall, the model achieved an F1 score of 0.875. This indicates a good 
balance between Precision and recall. 
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Figure 11. Evaluation Matrix 
 

Figure 11 shows that increasing the number of epochs can improve the performance of the 
RetinaNet model in the lettuce object detection task. As the number of epochs increases, the 
model tends to have a better ability to detect lettuce objects with a higher recall rate while 
maintaining a high precision level. Detection results also improve, as increased F1-score and 
mAP values indicate. This improvement can lead to better model learning as the number of 
epochs increases. In this study, the optimal number of epochs is 500, where the model achieves 
the highest performance with good levels of recall, Precision, and F1-score. 

3.3.4. Inference 

We perform inference on the object detection model to detect lettuce in images. Inferencing 
involves using a previously trained model to identify and map the location of lettuce objects in a 
snap. To test the inference, we use a test data set. This data set consists of images that the 
model has never seen before. Each photo will be run through an object detection model. The 
inference results are evaluated using accuracy, Precision, recall, and F1 score metrics. These 
metrics indicate the model's performance in correctly recognizing and mapping lettuce objects. 
 

 
 

Figure 12. Inference Images 
 

The evaluation process involves testing the model on four different sample images, which are 
test data the model has never seen before. The evaluation results show in Figure 12. that the 
object detection model successfully detected lettuce accurately in the four sample images. In 
each image, the model can identify and map the exact location of the lettuce through the 
bounding box. In addition to high accuracy, the model can provide detection results with good 
Precision and recall. Precision measures the model's ability to correctly classify a detection as 
lettuce, while recall measures the model's ability to identify and detect as much lettuce in an 
image as possible. 
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3.3.5. Intersection over Union (IoU) 

In this section, we will look at the IoU values of the RetinaNet models that have been trained. 
 

 
 

Figure 13. IoU from Model RetinaNet 
 

In Figure 13, the IoU value between the ground truth box and the predictor box is 0.72. The IoU 
value indicates how much the prediction box overlaps with the ground truth box. Higher IoU 
values indicate more significant agreement between predicted and ground truth. For example, 
the IoU value of 0.72 means that the expected box significantly overlaps the ground truth box, 
indicating that the model successfully recognizes the lettuce object in the image. 
 
4. Conclusion 

In evaluating the RetinaNet model for lettuce object detection, various performance metrics 
were considered across different epochs. Firstly, the model's accuracy demonstrated a clear 
upward trend, reaching 0.782 at 500 epochs and a high IoU value of 0.72. They indicated 
improved object detection capabilities with prolonged training. Similarly, the AUC values 
reflected enhanced discrimination between positive and negative examples as the number of 
epochs increased. The recall, Precision, F1 score, and mAP consistently improved, 
underscoring the model's effectiveness in detecting lettuce objects with increasing training 
iterations. 

Furthermore, a detailed analysis of each metric revealed the Precision of the RetinaNet model 
in classifying lettuce objects with high values across different epochs. The F1 scores, 
representing the balance between Precision and recall, indicated an improved equilibrium with 
increased training epochs. The mean Average Precision consistently showed high-quality 
detection results at every epoch set, emphasizing the robust performance of the model. These 
findings suggest that extending the training duration positively impacts the RetinaNet model's 
proficiency in lettuce object detection, providing valuable insights for future refinements and 
optimizations. 
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