Pengelolaan Barang Milik Negara Menggunakan Sistem Pendukung Keputusan Berbasis C5.0

  • Pande Made Sutawan 087761386266
  • Made Sudarma
  • Nyoman Gunantara

Abstract

The recording of State Property at Udayana University on SIMAK-BMN has been carried out well, but the recorded State Property data only supports the preparation of balance sheets, lists of goods, reports of goods and control cards. The amount of data that is increasing every year has not been utilized optimally. The large amount of data at Udayana University and the superiority of K-Means in data grouping makes it possible to group data at the preprocessing stage using K-Means, then forming decision tree rules using C5.0 which is a refinement of the ID3 and C4.5 algorithms. The variables used in the formation of the decision tree are conditions, useful life and warranty period. The results of the study show that the decision tree rules that are formed are first checking the useful life, secondly checking good and other than good conditions, thirdly checking damaged conditions, namely lightly damaged and heavily damaged, and fourthly checking the warranty period. The recommendations generated by the decision support system are 2,894 preserved items, 1,397 deleted items, 112 maintained items with guarantees and 18 maintained items without warranty, out of a total of 4,421 items. The accuracy obtained is 97.69% calculated using the confusion matrix.


Keywords : State property; K-Means; C5.0

Downloads

Download data is not yet available.

References

[1] R. Indonesia, “Peraturan Pemerintah Republik Indonesia Nomor 28 Tahun 2020 tentang Perubahan atas Peraturan Pemerintah Nomor 27 Tahun 2014 tentang Pengelolaan Barang Milik Negara/Daerah.” 2020.
[2] D. P. Utomo, P. Sirait, and R. Yunis, “Reduksi Atribut Pada Dataset Penyakit Jantung dan Klasifikasi Menggunakan Algoritma C5.0,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 4, no. 4, pp. 994–1006, 2020, doi: DOI 10.30865/mib.v4i4.2355.
[3] R. Yanto and H. D. Kesuma, “Pemanfaatan Data Mining Untuk Penempatan Buku Di Perpustakaan Menggunakan Metode Association Rule,” Jatisi, vol. 4, no. 1, pp. 1–10, 2017.
[4] A. S. Sunge and F. L. Devi, “Analisis Pemilihan Jurusan Siswa dengan Metode Klasifikasi C5.0 (Studi Kasus : SMK Ma’Arif NU Al – Mawardi Bekasi),” SIGMA – Jurnal Teknologi Pelita Bangsa, vol. 10, no. 4, p. 8, 2020.
[5] P. H. Simbolon, “Implementasi Data Mining Pada Sistem Persediaan Barang Menggunakan Algoritma Apriori (Studi Kasus: Srikandi Cash Credit Elektronic dan Furniture),” Jurnal Riset Komputer (JURIKOM), vol. 6, no. 4, pp. 401–406, 2019.
[6] F. L. Sibuea and A. Sapta, “Pemetaan Siswa Berprestasi Menggunakan Metode K-Means Clustering,” Jurnal Teknologi dan Sistem Informasi, vol. 4, no. 1, pp. 85–92, 2017.
[7] F. Rahmawati and N. Merlina, “Metode Data Mining Terhadap Data Penjualan Sparepart Mesin Fotocopy Menggunakan Algoritma Apriori,” PIKSEL, vol. 6, no. 1, pp. 9–20, 2018, doi: 10.33558/piksel.v6i1.1390.
[8] E. Prasetyowati, Data Mining Pengelompokan Data untuk Informasi dan Evaluasi. 2017.
[9] M. S. Mustafa, M. R. Ramadhan, and A. P. Thenata, “Implementasi Data Mining untuk Evaluasi Kinerja Akademik Mahasiswa Menggunakan Algoritma Naive Bayes Classifier,” citec, vol. 4, no. 2, pp. 151–162, 2017, doi: 10.24076/citec.2017v4i2.106.
[10] D. Listriani, A. H. Setyaningrum, and F. Eka, “Penerapan Metode Asosiasi Menggunakan Algoritma Apriori Ppada Aplikasi Analisa Pola Belanja Konsumen (Studi Kasus Toko Buku Gramedia Bintaro),” J. Teknik inform., vol. 9, no. 2, pp. 120–127, 2018, doi: 10.15408/jti.v9i2.5602.
[11] B. L. Lesmana, “Analisis Pola Penjualan Obat Dan Alat Kesehatan Di Apotek THS Pematangsiantar Dengan Menggunakan Algoritma Apriori,” Seminar Nasional Matematika dan Terapan 2019, vol. 1, pp. 652–657, 2019.
[12] P. W. Kastawan, D. M. Wiharta, and M. Sudarma, “Implementasi Algoritma C5.0 pada Penilaian Kinerja Pegawai Negeri Sipil,” JTE, vol. 17, no. 3, pp. 371–376, 2018, doi: 10.24843/MITE.2018.v17i03.P11.
[13] E. Buulolo, Data Mining untuk Perguruan Tinggi. 2020.
[14] H. D. Anggraeni, R. Saputra, and B. Noranita, “Aplikasi Data Mining Analisis Data Transaksi Penjualan Obat Menggunakan Algoritma Apriori (Studi Kasus di Apotek Setya Sehat Semarang),” JMASIF, vol. 4, no. 7, pp. 1–8, 2013, doi: 10.14710/jmasif.4.7.1-8.
[15] Y. Aswan, S. Defit, and G. W. Nurcahyo, “Algoritma K-Means Clustering dalam Mengklasifikasi Data Daerah Rawan Tindak Kriminalitas (Polres Kepulauan Mentawai),” JSisfotek, vol. 3, no. 4, pp. 245–250, 2021, doi: 10.37034/jsisfotek.v3i4.73.
[16] W. M. P. Dhuhita, “Clustering Menggunakan Metode K-Means untuk menentukan Status Gizi Balita,” Jurnal Informatika, vol. 15, no. 2, pp. 160–174, 2015.
[17] C. D. O. Soleman, N. Pramaita, and M. Sudarma, “Classification Of Loyality Customer Using K-Means Clustering, Studi Case : PT. Sucofindo (Persero) Denpasar Branch,” International Journal of Engineering and Emerging Technology, vol. 5, no. 2, pp. 160–167, 2020.
[18] M. Triandini, S. Defit, and G. W. Nurcahyo, “Data Mining dalam Mengukur Tingkat Keaktifan Siswa dalam Mengikuti Proses Belajar pada SMP IT Andalas Cendekia,” jidt, vol. 3, no. 3, pp. 167–173, 2021, doi: 10.37034/jidt.v3i3.120.
[19] A. Solichin and K. Khairunnisa, “Klasterisasi Persebaran Virus Corona (Covid-19) Di DKI Jakarta Menggunakan Metode K-Means,” FIJ, vol. 5, no. 2, pp. 52–59, 2020, doi: 10.21111/fij.v5i2.4905.
[20] U. S. Aesyi, A. R. Lahitani, T. W. Diwangkara, and R. T. Kurniawan, “Deteksi Dini Mahasiswa Drop Out Menggunakan C5.0,” JISKa, vol. 6, no. 2, pp. 113–119, 2021, doi: 10.14421/jiska.2021.6.2.113-119.
[21] R. Pratiwi, M. N. Hayati, and S. Prangga, “Perbandingan Klasifikasi Algoritma C5.0 dengan Classification and Regression Tree (Studi Kasus: Data Sosial Kepala Keluarga Masyarakat Desa Teluk Baru Kecamatan Muara Ancalong Tahun 2019),” Jurnal Ilmu Matematika dan Terapan, vol. 14, no. 2, pp. 267–278, 2020.
[22] I. B. P. Jayawiguna, I. B. A. Swamardika, and M. Sudarma, “Comparison of Model Prediction for Tile Production in Tabanan Regency with Orange Data Mining Tool,” International Journal of Engineering and Emerging Technology, vol. 5, no. 2, pp. 72–76, 2020.
[23] J. Eska, “Penerapan Data Mining Untuk Prediksi Penjualan Wallpaper Menggunakan Algoritma C4.5,” JURTEKSI (Jurnal Teknologi dan Sistem Informasi), vol. 2, no. 2, pp. 9–13, 2016, doi: 10.31227/osf.io/x6svc.
[24] R. R. Putra and C. Wadisman, “Implementasi Data Mining Pemilihan Pelanggan Potensial Menggunakan Algoritma K-Menas,” Journal of Information Technology and Computer Science, vol. 1, no. 1, pp. 72–77, 2018, doi: DOI : https://doi.org/10.31539/intecoms.v1i1.141.
[25] M. Hassoon, M. S. Kouhi, M. Zomorodi-Moghadam, and M. Abdar, “Rule Optimization of Boosted C5.0 Classification Using Genetic Algorithm for Liver disease Prediction,” in 2017 International Conference on Computer and Applications (ICCA), Doha, United Arab Emirates, Sep. 2017, pp. 299–305. doi: 10.1109/COMAPP.2017.8079783.
[26] J. Guo, H. Liu, Y. Luan, and Y. Wu, “Application of Birth Defect Prediction Model Based on C5.0 Decision Tree Algorithm,” in 2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), Halifax, NS, Canada, Jul. 2018, pp. 1867–1871. doi: 10.1109/Cybermatics_2018.2018.00310.
[27] K. Auliasari, M. Kertaningtyas, and D. Wilis Lestarining Basuki, “Analisis Penentuan Resiko Kredit Menggunakan Algoritma C.5.0,” J-TIT, vol. 8, no. 1, pp. 28–33, 2021, doi: 10.25047/jtit.v8i1.218.
[28] U. S. Aesyi, T. W. Diwangkara, and R. T. Kurniawan, “Diagnosa Penyakit Disk Hernia dan Spondylolisthesis Menggunakan Algoritma C5,” Telematika, vol. 16, no. 2, pp. 81–86, 2020, doi: 10.31315/telematika.v16i2.3181.
[29] N. Agustiani, D. Suhendro, and W. Saputra, “Penerapan Data Mining Metode Apriori Dalam Implementasi Penjualan Di Alfamart,” Prosiding Seminar Nasional Riset Dan Information Science (SENARIS) 2020, vol. 2, pp. 300–304, 2020.
Published
2023-06-05
How to Cite
SUTAWAN, Pande Made; SUDARMA, Made; GUNANTARA, Nyoman. Pengelolaan Barang Milik Negara Menggunakan Sistem Pendukung Keputusan Berbasis C5.0. Majalah Ilmiah Teknologi Elektro, [S.l.], v. 22, n. 1, p. 125-132, june 2023. ISSN 2503-2372. Available at: <https://ojs.unud.ac.id/index.php/jte/article/view/97639>. Date accessed: 12 june 2024. doi: https://doi.org/10.24843/MITE.2023.v22i01.P16.