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ABSTRACT  

Backgrounds: Cyanidin and peonidin, anthocyanin compounds, have many in silico, in 

vitro, and in vivo activities, including antioxidant, anticancer, antihyperlipidemic, and 

antidiabetic. Toxicity testing is carried out to determine the potential hazard that may be 

produced by the test compound. Objective: This study was aimed to determine the in silico 

toxicity of anthocyanins (cyanidin and peonidin) using Toxtree v3.1.0 software. Methods: 

In silico toxicity testing was carried out using 2D structures of cyanidin and peonidin with 

Cramer rules, Verhaar scheme, Benigni/Bossa rulebase, Kroes TTC decision tree, Eye 

Irritation/Corrosion and Skin Irritation/Corrosion parameters. Data analysis on the results of 

the tested toxicity parameters was carried out descriptively. Results: The results showed 

that the two compounds have the same category for the toxicity parameters of Cramer Rules 

(class III), Kroes TTC Decision Tree (substance would not be expected to be safety concern), 

Benigni/Bossa Rulebase (Negatif for genotoxic and nongenotoxic carcinogenicity), Eye 

Irritation/Corrosion and Skin Irritation/Corrosion (not irritating or corrosive). Different 

results are shown in the parameters of the Verhaar Scheme, where cyanidin is included in 

class 5 (cannot be classified based on this parameter), while peonidin is included in class 1 

(narcosis or basic toxicity). Conclusion: Based on in silico toxicity, cyanidin and peonidin 

have a chemical structure that has the potential for toxicity, but these compounds are neither 

potentially genotoxic nor non-genotoxic carcinogenicity, and are not potentially toxic to the 

skin and eyes. The toxicity mechanism of cyanidin cannot be classified based on the test 

parameters while peonidin is narcosis or basic toxicity.       
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INTRODUCTION 

       Anthocyanins are a class of 

flavonoids found in plants with the 

characteristic of giving bright colors such 

as orange, red and blue. There are six 

types of anthocyanins commonly found in 

higher plants, namely: cyanidin, 

pelargonidin, petunidin, malvidin, 

peonidin, and delvinidin[1]. Many plants 

contain anthocyanins, one of which is the 

purple sweet potato (Ipomoea batatas L.). 

Anthocyanin in purple sweet potato is 

known to have activity as an antioxidant, 

anti-inflammatory, anticarcinogenic, 

antiulcer, hepatoprotective, and 

hypouricemia[2-7]. In purple sweet potato 

root, the highest anthocyanin content is 

cyanidin and peonidin [2]. In silico, 

cyanidin and peonidin also have the 

potential to inhibit porcine pancreatic α-

amylase as anti-diabetic type 2, inhibit 

superoxide dismutase as an antioxidant, 

and HMG-CoA reductase inhibitors as 

antihyperlipidemia[8-10].  
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       In drug development, besides activity, 

toxicity also needs to be considered. 

Toxicity tests determine the potential 

hazard of compounds that may be 

produced[11]. Initial toxicity testing can be 

carried out in silico without using 

experimental animals, so that toxicity tests 

can be carried out more quickly and 

efficiently in predicting the toxicity of a 

compound[12]. In silico method was 

developed to predict the toxicity of a 

compound based on the relationship 

between its physicochemical properties 

and biological activity including its 

toxicity effects, using certain algorithms 

and database models[13]. In this study, 

toxicity test of the anthocyanin 

compounds, cyanidin and peonidin, was 

carried out using Toxtree v3.1.0. to predict 

toxicity levels, mutagenesis and 

carcinogenesis, as well as irritation or 

corrosion of skin and eyes in silico[14-15].  

 

METHODS 

       The 2D structures of cyanidin and 

peonidin were downloaded from 

https://pubchem.ncbi.nlm.nih.gov. with 

SDF file format (*.sdf) (Figure 1). 

Toxicity prediction was performed using 

Toxtree v3.1.0 software. Tests were 

carried out using six parameters, namely 

Cramer Rules, Verhaar Scheme, 

Benigni/Bossa Rulebase, Kroes TTC 

Decision Tree, Eye Irritation/Corrosion, 

and Skin Irritation/Corrosion. The data 

obtained were analyzed descriptively. 

 

 
(a) 

 
(b) 

Figure 1. 2D Structure of Cyanidin (a) 

and Peonidin (b) 

 

RESULTS 

       The results of the cyanidin and 

peonidin toxicity tests for the 6 test 

parameters are shown in Table 1. 

Cyanidin and peonidin showed the same 

category for the toxicity parameters of 

Cramer Rules, Benigni/Bossa Rulebase, 

Kroes TTC Decision Tree, Eye 

Irritation/Corrosion, and Skin 

Irritation/Corrosion. Different results are 

shown in the parameters of the Verhaar 

Scheme, where cyanidin is included in 

class 5 (cannot be classified based on this 

parameter), while peonidin is included in 

class 1 (narcosis or basic toxicity). 
 

DISCUSSION 

       Toxtree has many test parameters 

with different toxicity test results[16]. The 

Cramer rules, Verhaar scheme, and 

Benigni/Bossa rulebase toxicity 

parameters only require the 2D structure 

of the test compound, while the Kroes 

TTC decision tree, Eye 

Irritation/Corrosion and Skin 

Irritation/Corrosion parameters require 

additional data, estimated daily intake 

(μg/day) and melting point. 

       Cramer rule parameters are used to 

classify and rank compounds for oral 

toxicity. This parameter classifies 

compounds into three classes, namely: 

Class I, Class II, and Class III. Questions 

about this parameter are based on 

knowledge of toxicity and metabolism in 

mammals[17]. Cyanidin and peonidin are 

classified into class III, a group of 

compounds with a chemical structure that 
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allows for significant toxicity or 

toxicity[15]. This is based on the structure 

of cyanidin and peonidin which have 

heterocyclic, heteroaromatic, substituted 

rings, and more than one aromatic ring. 

Based on Figure 1, the heterocyclic and 

heteroaromatic structures of cyanidin and 

peonidin are ring C which is an oxidation 

form of the pyran ring of flavonoids, while 

the aromatic rings are rings A and B[18]. 

Compounds with heterocyclic or 

heteroaromatic rings have the 

intermediate metabolism product of arene 

oxide, which is reactive compound, react 

with nucleophiles, and react 

spontaneously to DNA causing 

carcinogenesis and mutagenesis. The 

benzene ring with -OH substituent is 

metabolized through oxidative reaction to 

become reactive electrophile compound 

that can cause oxidative stress. Increasing 

the number of aromatic rings will increase 

the irreversible inhibitory effect of 

cytochrome P450 thereby increasing the 

risk of toxicity [19-21]. 

       The Kroes TTC decision tree is based 

on Cramer's rules to estimate the exposure 

threshold based on dose-response for 

compounds with a carcinogenic risk[14,22]. 

This parameter requires daily intake data. 

The daily intake of cyanidin and peonidin 

compounds is unknown, therefore the 

daily intake data is used from the results 

of the Cramer rule parameter test, which is 

90 μg/day[23]. The test results show that 

cyanidin and peonidin are included in 

compounds with substances that would 

not be expected to be a safety concern. 

Cyanidin and peonidin do not have 

structures indicating potential genotoxic 

carcinogenicity based on the 39 structural 

alerts used in this parameter [23,24]. 

       The Verhaar scheme is used to predict 

the mechanism of toxicity in acute 

toxicity[25]. This parameter can be divided 

into five classes, namely: Class 1, 2, 3, 4, 

and 5. The test results show that cyanidin 

belongs to class 5, which is a group of 

compounds that cannot be classified based 

on the parameters of the Verhaar scheme 

so that further testing is required[14]. 

 

Table 1. Toxicity Test Results of 

Cyanidin and Peonidin 

Test 

Parameter 

Compound 

Cyanidin Peonidin 

Cramer rules 
Class III 

(High) 

Class III 

(High) 

Kroes TTC 

 decsion tree 

Substance 

would not 

be expected 

to be safety 

concern 

Substance 

would not be 

expected to 

be safety 

concern 

Verhaar 

scheme 

Class 5 (Not 

Possible to 

classify 

according to 

these rules)  

Class 1 

(narcosis or 

baseline 

toxicity) 

Benigni/Bossa 

rulebase 

Negatif for 

genotoxic 

and 

nongenotoxi

c 

carcinogeni

city  

Negatif for 

genotoxic and 

nongenotoxic 

carcinogenicit

y 

Skin 

Irritation/ 

Corrosion 

Non 

irritating or 

corrosive to 

skin (does 

not cause 

burns and 

severe 

burns) 

Non irritating 

or corrosive 

to skin (does 

not cause 

burns and 

severe burns) 

Eye 

Irritation/ 

Corrosion 

Non 

irritating or 

corrosive to 

eye (does 

not cause 

burns and 

severe 

burns) 

Non irritating 

or corrosive 

to eye (does 

not cause 

burns and 

severe burns) 

 

Peonidin belongs to class 1 which is a 

compound with basic toxicity. 

Compounds with basic toxicity have a 

toxicity mechanism called narcosis, which 

is a reversible suppression of 

physiological functions due to the 

hydrophobic bond of the compound to cell 

membranes and proteins. Compounds 

with this toxicity mechanism have toxic 

effects through disruption of membrane 

function[26]. Class 1 compounds are not 
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reactive and do not interact specifically 

with receptors on organisms[14].  

       Benigni/Bossa rulebase parameters 

are used to predict the carcinogenic and 

mutagenic potential of a compound based 

on the structural alerts model[14.24.27]. The 

mechanism of carcinogenicity consists of 

genotoxic and non-genotoxic. Based on 

the test results, cyanidin and peonidin are 

predicted not to cause genotoxic or non-

genotoxic carcinogenicity. This result was 

obtained because the cyanidin and 

peonidin compounds did not contain any 

of the structural alerts present in this 

parameter. 

       Parameters Eye Irritation/Corrosion 

and Skin Irritation/Corrosion are used to 

assess the potential toxicity of the 

compounds to the skin and eyes. This 

parameter uses the physicochemical 

properties of the melting point. The test 

results show that cyanidin and peonidin 

are not irritating or corrosive (do not cause 

burns and severe burns). This is because 

both compounds have high melting points, 

above 200ºC[28]. The melting point is 

related to the permeability of compounds 

on the skin as well as their solubility and 

ability to penetrate the skin[29]. 

Compounds with melting points below 

100ºC are more easily absorbed through 

the skin, so the possibility of causing 

corrosion or irritation is higher[30,31].  

 

CONCLUSION 

       Based on in silico toxicity, cyanidin 

and peonidin compounds have a chemical 

structure that allows for toxicity with a 

cyanidin toxicity mechanism that cannot 

be classified based on test parameters, 

while peonidin is marcosis or basic 

toxicity. These two compounds do not 

have the potential to cause carcinogenicity 

either genotoxic or nongenotoxic, and are 

not potentially toxic to the skin or eyes. 
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