Identifikasi Citra Daun Tanaman Herbal menggunakan Convolutional Neural Network
Abstract
Indonesia is one of the countries with the highest number of herbal plant species in the world. However, it is not linear with people's knowledge about herbal plants and their health benefits. Leaves are one of the characteristics of plants that can be used to identify plant species because each plant has leaves and is easier to distinguish than tree bark. This research uses the Local Binary Pattern (LBP) method to obtain the texture features of leaf herbal plants, and the Convolutional Neural Network (CNN) to perform the classification. The highest accuracy was obtained with an epoch value of 25 and a batch size of 32. This combination resulted in a model with an accuracy of 95%, and when tested with validation data it produced an accuracy of 84%. Overall, the model that was built was able to identify the types of herbal plants very well.
This work is licensed under a Creative Commons Attribution 4.0 International License.
The Authors submitting a manuscript do so on the understanding that if accepted for publication, the copyright of the article shall be assigned to JNATIA (Jurnal Nasional Teknologi Informasi dan Aplikasinya) as the publisher of the journal. Copyright encompasses exclusive rights to reproduce and deliver the article in all forms and media, as well as translations. The reproduction of any part of this journal (printed or online) will be allowed only with written permission from JNATIA (Jurnal Nasional Teknologi Informasi dan Aplikasinya). The Editorial Board of JNATIA (Jurnal Nasional Teknologi Informasi dan Aplikasinya) makes every effort to ensure that no wrong or misleading data, opinions, or statements be published in the journal.
This work is licensed under a Creative Commons Attribution 4.0 International License.