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Abstract: In this paper, we extend the capability of a newly developed numerical scheme 

based on our preceding linear conformal and non-conformal finite element methods 

(FEM) to study 2D shallow water equations (SWE) with various boundaries. Unlike the 

usual approach, we approximate the unknown in a staggered grid due to the use of a 

linear alternating basis. Here, the free surface is approximated using a conformal while 

the velocity potential is approximated using a non-conformal lin-ear basis. As a result, 

the variational problem must be reformulated. The resulting scheme is an ODE system 

which is easy to solve by any time integration method. Therefore, our method is stag-

gered in space, explicit, flexible and simple to implement. The simulation results show 

that the flexibility of the scheme can be interpreted as the successful use of various 

boundary conditions. 

 

Keywords: 2D SWE, staggered finite element, non-conformal basis, influx boundary 
 

 

Abstrak: Dalam makalah ini, kami mengembangkan lebih jauh kapabilitas skema 

numerik yang baru dikembangkan pada penelitian sebelumnya, berdasarkan pada 

metode elemen (FEM) konformal dan non-konformal linier untuk mempelajari 

persamaan air dangkal 2D dengan penerapan berbagai kondisi batas. Berbeda dengan 

pendekatan pada umumnya, kami menghitung variabel yang tidak diketahui pada grid 

bertingkat (staggered) akibat penggunaan basis linier secara selang seling; basis 

konformal dan non-konformal. Variabel permukaan bebas dihampiri menggunakan 

basis konformal sedangkan kecepatan potensial dihampiri dengan basis non-konformal. 

Akibatnya, bentuk variasional permasalahan harus diformulasikan ulang. Skema yang 
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dihasilkan adalah sistem ODE yang mudah diselesaikan dengan sebarang metode 

integrasi waktu. Oleh karena itu, metode kami bersifat staggered in space, eksplisit, 

fleksibel, dan mudah diterapkan. Hasil simulasi menunjukkan bahwa sifat fleksibilitas 

skema dapat artikan sebagai keberhasilan penggunaan berbagai kondisi batas yang 

diterapkan secara bersamaan dalam skema. 

 

Kata Kunci: 2D SWE, metode elemen hingga pada grid bertingkat, basis non-

konformal, syarat batas fluks masuk. 

 

 

1. Introduction 

One of the equations that are often used in modelling in shallow areas is the Shallow 

Water Equation (SWE). It consists of a system of nonlinear first-order partial differential 

equations, i.e. mass continuity and momentum balance. This equation is derived from the 

Navier Stokes equation with the shallow assumption, namely the horizontal length scale 

is more dominant than the depth scale, so the vertical velocity component can be ne-

glected. Thus, the SWE equation can be used to model various phenomena in shallow 

areas such as: steady flow in open channels (Hadiarti et al., 2023; Swastika et al., 2021), 

nearshore tsunami propagation (Tarwidi et al., 2022), internal wave(Swastika & Pudjapra-

setya, 2021), etc. 

It is difficult to determine the exact solution of the SWE equation, especially when it 

is applied to mimic real-world occurrences. As a result, numerical approximation is an 

alternate method for obtaining the SWE solution. The finite element method is one method 

that several authors frequently employ to solve the SWE (Hanert et al., 2003; Le Roux et 

al., 2005). In general, the finite element approach is a methodology for constructing finite-

dimensional spaces of a Hilbert space of specific classes of functions, such as Sobolev 

spaces of various orders and their subspaces, in order to apply the Galerkin process to a 

variational problem or weak formulation (Siddiqi, 2018). 

In our preceding contribution (Swastika et al., 2020), we proposed a newly non-con-

formal 𝑃1
𝑁𝐶 basis function. Our work was inspired by Hua & Tommaset (1984) and  Cui 

(2013), in which study the two-dimensional SWE equation using the  𝑷𝟏
𝑵𝑪 − 𝑷𝟏 finite 

element. We examine that a discontinuous one-dimensional basis function 𝑃1
𝑁𝐶 does not 

yet exist, although its two-dimensional version of non-conformal 𝑷𝟏
𝑵𝑪 basis is well-estab-

lished (Cui, 2013). In their study, the SWE are approximated in spatially staggered finite 

element pair due to the use of alternating basis function; conformal basis 𝑷𝟏, for free 

surface variable and a non-conformal 𝑷𝟏
𝑵𝑪 for horizontal velocity. The terms conformal 

and non-conformal is related to continuity and discontinuity of the basis function proper-

ties. The non-conforming 𝑷𝟏
𝑵𝑪 shape functions have a value of 1 at one edge, linearly 

change to -1 to the opposite node, the value at the mid of other two edges are zero. Mean-

while, the 𝑷𝟏 shape function have the following properties: it has a value of 0 for all 
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neighbouring nodes but have a value of 1 at one node (Cui, 2013; Hua & Thomasset, 

1984). Unlike the common approach by Hua & Tommaset (1984) and Cui (2013), in this 

paper, we extend our preceding contribution (Swastika et al., 2020), together with the use 

of conformal and nonconformal FEM or simply 𝑷𝟏
𝑵𝑪 − 𝑷𝟏 finite element pair to solve 2D 

SWE in primitive form. Thus, we have derived the novel variational problem based on 2D 

SWE in primitive form or reformulated again the weak form as well as the discrete for-

mulation. Here we also implement the various boundary condition; absorbing, influx, 

hardwall and combination thereof to investigate the flexibility of our proposed approach.  

The rest of the paper is organized as follows. In Section 2, the governing equation as 

well as the weak form and the discrete form are examined. In this section, we reformulate 

the weak formulation using the primitive form of SWE using various boundary conditions. 

The discrete form is derived by approximating the free surface with a conformal basis 𝑷𝟏, 

but the velocity potential with a non-conformal basis 𝑷𝟏
𝑵𝑪. In Section 3, we conducted 

numerical experiment to investigate our proposed formulation using various boundary 

conditions. We are concerned with the performance of our numerical scheme. The final 

portion will include conclusions and remarks. 

 

 

2. Governing Equations and Finite Element Discretization 

 

We begin by discussing the mathematical model used in this paper. Suppose we con-

sider 3D- spatial coordinate system (𝒙, 𝑧) where 𝒙 = (𝑥, 𝑦) denoted horizontal coordinate 

and  𝑧 represent vertical coordinate. Our discussion focuses on a layer of ideal fluid 

bounded below by an impermeable bottom topography 𝑧 = 𝑏(𝒙) and bounded above by 

free surface 𝑧 = 𝜂(𝒙, 𝑡). The total depth denoted by ℎ(𝒙, 𝑡) = 𝑑(𝒙) + 𝜂(𝒙, 𝑡) where 

𝑢(𝒙, 𝑡) represented horizontal velocity. In this study, we assume that the flow is hydro-

static so the horizontal velocity component is dominant in comparison with the vertical 

component. Under the assumption that the depth scale is smaller than the horizontal length 

scale, the fluid motion in the shallow areas is governed by 2D Shallow Water Equations 

(SWE) in primitive form as follows 

 

𝜕𝜂

𝜕𝑡
+ ∇. (ℎ∇𝜙) = 0, 1  

𝝏𝜙

𝜕𝑡
+ 𝑔𝜂 = 0, 2  

where 𝑔 = 9.8𝑚/𝑠2 is the gravitational acceleration. Equations (1) and (2) derived from 

linearized SWE with irrotational assumptions. In our previous work, we have proposed a 

one-dimensional finite element scheme to solve the linear SWE (1)-(2) together with the 
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hard wall boundary conditions. Here we extend our proposed scheme in two-dimensional 

case with influxing boundaries as well as absorbing boundaries.  

To obtain numerical discretization in finite element sense, we start deriving the varia-

tional problem of the equations (1) and (2). Suppose  Ω be the spatial domain with bound-

ary Τ and 𝒏 be the outward unit normal vector. Let 𝜙 be approximate in a suitable func-

tional space 𝑃 with the following relation ∇𝜙. 𝒏 = 0 on the boundary Τ, ∀𝜙 ∈ P.  Let 𝜂 

also be approximate in a functional space 𝐸. The weak form of (1) and (2) is obtained by 

integrating against a set of admissible test function 𝑉 ∈ 𝐸 and 𝑊 ∈ 𝑃 such that 

𝑑

𝑑𝑡
 ∫ 𝜂𝑉𝑑Ω + ∫ ∇. (𝑑0∇𝜙) 𝑉𝑑Ω

⬚

Ω

= 0

⬚

Ω

 , ∀𝑉 ∈ 𝐸, 3  

𝑑

𝑑𝑡
∫ 𝜙𝑊𝑑Ω + 𝑔 ∫ 𝜂𝑊𝑑Ω = 0

⬚

Ω

⬚

Ω

, ∀𝑊 ∈ 𝑃 4  

for flat topography 𝑑(𝒙) = 𝑑0. The second term on equation (3) is integrated by parts 

using Gauss Theorem to remove velocity potential second derivatives and thus avoid in 

the contribution of boundary condition 

∫ ∇. (𝑑0∇𝜙) 𝑉𝑑Ω

⬚

Ω

= − [𝑑0 ∫ ∇𝜙 𝑉𝑑Τ

⬚

Τ

− 𝑑0 ∫ ∇𝜙∇𝑉𝑑Ω

⬚

Ω

] , ∀𝑉 ∈ 𝐸, 5  

The first term on the right-hand side of (5) vanishes due to hard-wall boundary  

condition since ∇𝜙 ∈ 𝑃 and so ∇𝜙. 𝒏 = 0. We obtained the weak form of the equations 

(1) and (2) as: determine 𝜂 ∈ 𝐸 and 𝜙 ∈ 𝑃 such that 

𝑑

𝑑𝑡
 ∫ 𝜂𝑉𝑑Ω − 𝑑0 ∫ ∇𝜙∇𝑉𝑑Ω

⬚

Ω

= 0

⬚

Ω

 , ∀𝑉 ∈ 𝐸, 6  

𝑑

𝑑𝑡
∫ 𝜙𝑊𝑑Ω + 𝑔 ∫ 𝜂𝑊𝑑Ω = 0

⬚

Ω

⬚

Ω

, ∀𝑊 ∈ 𝑃 7  

 

Furthermore, if we consider the radiation boundary condition (absorbing) given as  

𝜙𝑡 = ±𝑐∇𝜙. 𝒏  8  

then the weak form (6) and (7) must be reformulated. If we consider (5) and employing 

(8) together with relation (2), we obtained  

∫ ∇. (𝑑0∇𝜙) 𝑉𝑑Ω

⬚

Ω

= ∓𝑐 ∫ 𝜂𝑉𝑑Τ

⬚

Τ

+  𝑑0 ∫ ∇𝜙∇𝑉𝑑Ω

⬚

Ω

, ∀𝑉 ∈ 𝐸, 9  

Thus, the weak form of (1) and (2) with absorbing boundary conditions are given as: de-

termine 𝜂 ∈ 𝐸 and 𝜙 ∈ 𝑃 such that 
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𝑑

𝑑𝑡
 ∫ 𝜂𝑉𝑑Ω

⬚

Ω

 − 𝑑0 ∫ ∇𝜙∇𝑉𝑑Ω

⬚

Ω

= ∓𝑐 ∫ 𝜂𝑉𝑑Τ

⬚

Τ

, ∀𝑉 ∈ 𝐸, 10  

𝑑

𝑑𝑡
∫ 𝜙𝑊𝑑Ω + 𝑔 ∫ 𝜂𝑊𝑑Ω = 0

⬚

Ω

⬚

Ω

, ∀𝑊 ∈ 𝑃 11  

To derive the discrete scheme, we use Galerkin procedure to approximate the weak form 

as: seek (𝜂ℎ, 𝜙ℎ) in finite dimensional subspace  (𝐸ℎ, 𝑃ℎ) of finite dimensional space  

(𝐸, 𝑃). We start by writing (𝜂ℎ, 𝜙ℎ) as linear combination such that  

𝜂ℎ(𝒙, 𝑡) ≅ ∑ 𝜂𝑗(𝑡)𝑇𝑗(𝒙)

𝑁𝑉

𝑗=1

, 𝜙ℎ(𝒙, 𝑡) ≅ ∑ 𝜙𝑗(𝑡)𝜓𝑗(𝑥),

𝑁𝑆

𝑗=1

 12  

where 𝜂𝑗 , 𝜓𝑗 denoted nodal values and 𝑁𝑆, 𝑁𝑉 denoted number of segments and vertices 

of the triangles respectively. Meanwhile, {𝑇𝑗(𝒙)}𝑗=0
𝑁𝑉  and {𝜓𝑗(𝒙)}𝑗=0

𝑁𝑆  denoted piecewise-

polynomial finite element basis functions spanning the approximation spaces 𝐸ℎ and 𝑃ℎ 

respectively. The {𝑇𝑗(𝒙)}𝑗=0
𝑁𝑉  is conformal linear basis for shape function 𝑃1  and 

{𝜓𝑗(𝒙)}𝑗=0
𝑁𝑆    is non-conformal linear basis for shape function 𝑃1

𝑁𝐶, see Figure 1 for the 

illustration.  The 𝑃1 shape function have the following properties: it has a value of 0 for 

all neighbouring nodes but have a value of 1 at one node. Meanwhile, the non-conforming 

𝑃1
𝑁𝐶 shape functions have a value 1 at one edge, linearly change to -1 to the opposite node, 

the value at the mid of other two edges are zero (Cui, 2013; Hua & Thomasset, 1984). 

 
 

Figure 1. 2D Dimensional shape function; (left) conformal 𝑷𝟏 shape function (right), 

non-conformal 𝑷𝟏
𝑵𝑪 shape function. 
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By applying the Galerkin procedure (which orthogonalizes the residual error to the basis 

functions), the discrete form of Eqs. (10) and (11) can be summarized as: seeking the 

nodal values 𝜂𝑗 , 𝜓𝑗  such that 

𝑑

𝑑𝑡
 ∑ 𝜂𝑗(𝑡) 

𝑁𝑉

𝑗=1

∫ 𝑇𝑗𝑇𝑘 𝑑Ω

⬚

Ω

 − 𝑑0 ∑ 𝜙𝑗(𝑡) 

max{𝑁𝑉,𝑁𝑆}

𝑗=1

∫ ∇𝜓𝑗∇𝑇𝑘𝑑Ω

⬚

Ω

 

  = ∓𝑐 ∑ 𝜂𝑗(𝑡) ∫ 𝑇𝑗𝑇𝑘 𝑑𝜕Ω

⬚

∂Ω

 

𝑁𝑉

𝑗=1

, 13  

𝑑

𝑑𝑡
∑ 𝜙𝑗(𝑡) 

𝑁𝑉

𝑗=1

∫ 𝜓𝑗𝜓𝑘𝑑Ω + 𝑔 ∑ 𝜂𝑗(𝑡) 

𝑁𝑉

𝑗=1

∫ 𝑇𝑗𝜓𝑘 𝑑Ω

⬚

Ω

= 0

⬚

Ω

 14  

The discrete form (13) and (14) can be written in the matrix form as 

(
𝑴 𝟎
𝟎 𝑴𝒄

)
𝑑

𝑑𝑡
𝑨(𝑡) = (

𝑩 𝑺
�̅� 𝟎

) 𝑨(𝑡) 15  

where the element of mass matrices 𝑴, �̅�, 𝑴𝒏𝒄 , stiffness 𝑺 and boundary 𝑩 formulated 

as  

𝑨(𝑡) = [𝜂1, 𝜂2, … , 𝜂𝑁 , 𝜙1, 𝜙2, … , 𝜙𝑁 ]𝑇 , 𝑴 = [𝑚𝑘𝑗] = ∫ 𝑇𝑗𝑇𝑘

⬚

Ω

𝑑Ω, 

𝑴𝒏𝒄 = [𝑚𝑘𝑗
∗ ] = ∫ 𝜓𝑗𝜓𝑘

⬚

Ω

𝑑Ω, �̅� = [�̅�𝑘𝑗] = −𝑔 ∫ 𝑇𝑗𝜙𝑘

⬚

Ω

𝑑Ω, 

𝑺 = [𝑠𝑘𝑗] = ∫ 𝑑(𝒙)∇𝜙𝑗∇𝑇𝑘

⬚

Ω

𝑑Ω. 𝑩 = [𝑏𝑘𝑗] = ∫ 𝑑(𝒙)∇𝜙𝑗∇𝑇𝑘

⬚

𝜕Ω

𝑑𝜕Ω, 

which can be evaluating by any numerical integration method. The term 𝑑(𝒙) in stifness 

matrix appears when we consider the varying topography 𝑑(𝒙). Furthermore, the resulting 

scheme (15) is an ordinary differential system which can be solved by using any time 

integration, see (Swastika et al., 2020) for detail reference.  

 

 

3. Results and Discussion 

 

In this section, the numerical experiments are performed to investigate the implemen-

tation of influx boundaries together with absorbing boundaries. For the numerical simula-

tion we take the computational domain as 𝒙 ∈ Ω𝑝 = [0,100] × [0,100], 𝑑(𝒙) = 𝑑0 = 10 

which is triangular discretized.  Simulation are conducted using steady state at rest or still 

water level given by 

𝜂(𝑥, 𝑦, 0) = 0,  𝜙(𝑥, 𝑦, 0) = 0,   

and using absorbing at the three direction, togheter with left influx given by  
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𝜂(𝑥 = 𝑥𝑙 , 𝑦 = 𝑦𝑙, 𝑡) = 𝐴 sin(𝜔𝑡),  𝜙(𝑥 = 𝑥𝑙 , 𝑦 = 𝑦𝑙 , 𝑡) = −
𝑔𝐴

𝜔
cos(𝜔𝑡),  16  

with amplitude 𝐴 = 1, angular frequency 𝜔 = 2𝜋𝑓, 𝑓 = 0.1 and influx zone given as  

(𝑥𝑙, 𝑦𝑙) ∈ {(5, 𝑦), (𝑥, 5), (25,25)}. The contour plot of the surface deformation in 3D 

space along with the top view is presented in Figure 3-6.  

From the initial condition of still water level as plotted in Figure 2, the incoming mon-

ochromatic wave from the influx zone (𝑥𝑙 , 𝑦𝑙), propagating to the other side with an initial 

amplitude 𝐴 = 1. In Figure 3 it can be shown that the influx zone is located along the zone 

(5, 𝑦). Due to less finer mesh, the influx zone looks a bit rough. From the left influx 

boundary condition, a monochromatic function with profile (16) is imposed into the do-

main and propagates to the upper, lower and right walls. This process is also happening if 

we impose (16) from right boundary along the zone (𝑥, 5) and propagates to the upper, 

lower and left walls as shown in Figure 4. Meanwhile, in Figure 5, the influx zone is 

located along the zone (25,25) and propagates diagonally. Using the absorbing boundary 

conditions on all four sides together with the influx given by (16) causes a monochromatic 

wave to propagate and be absorbed on the other side of the wall. Finally, numerical sim-

ulation is also conducted using hardwall boundary on four sides of the wall. In Figure 6, 

the influx zone is located along the zone (25,25) and propagates diagonally towards hard-

wall boundaries and reflected back to the computational domain. All of these results indi-

cated that our proposed method is flexible in term of using various boundary conditions. 

 

 
Figure 2. Initial set up; (left) 3D plot of initial condition, (right) top view 
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Figure 3. Time-lapse of free surface deformation at the time 𝑡 = 25.50; (left) 3D plot 

the numerical solution, (right) top view of the problem where it is shown the mono-

cromatic influx from (5, 𝑦) propagating towards upper, bottom and right boundaries. 

 
Figure 4. Time-lapse of free surface deformation at the time 𝑡 = 49.50; (left) 3D plot 

the numerical solution, (right) top view of the problem where it is shown the mono-

cromatic influx from (𝑥, 5) propagating towards upper, left and right boundaries. 
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Figure 5. Time-lapse of free surface deformation at the time 𝑡 = 28.50; (left) 3D plot 

the numerical solution, (right) top view of the problem where it is shown the mono-

cromatic influx from (25,25) propagating towards upper, left and right boundaries. 

 
Figure 6. Time-lapse of free surface deformation at the time 𝑡 = 23.00; (left) 3D plot 

the numerical solution, (right) top view of the problem where it is shown the mono-

cromatic influx from (25,25) propagating towards hardwall boundaries. 
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4. Conclusion and Suggestion  

 

We have presented a novel numerical technique for solving two-dimensional SWE 

with various boundary conditions. Unlike the common approach suggested by several au-

thors, we have successfully approximated the two-dimensional SWE equation in its prim-

itive form. Here, we approximated the free surface by a linear combination of 𝑷𝟏, but the 

velocity potential is approximated by a linear combination of 𝑷𝟏
𝑵𝑪. As a result, the varia-

tional problem has been successfully reformulated in the primitive form. The use of vari-

ous boundary conditions, such as an influx, absorbing, hardwall, or a combination thereof, 

demonstrates the flexibility of our proposed method. Any time-integrated numerical 

method may readily solve the discrete version, which is a first-order ODE problem. Fur-

thermore, our proposed scheme is explicit, spatially staggered due to the use of an alter-

nating basis function, and easy to implement. Finally, we successfully simulate various 

cases using several boundary conditions. These studies are relevant for the introduction 

of our novel finite element method using alternating linear basis conformal and non-con-

formal to solve 2D SWE in primitive form together with the implementation of various 

boundary conditions. Our proposed 𝑷𝟏
𝑵𝑪 − 𝑷𝟏 finite element pair will be improved in fu-

ture research to solve the nonlinear SWE as well as a two-layer case. 
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