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Abstract: It is common in practice to evaluate the correctness of an assumed linear regression

model by conducting a model-check method in which the residuals of the observations are

investigated. In the asymptotic context instead of observing the vector of the residuals directly,

one investigates the partial sums of the observations. In this paper we derive a functional central

limit theorem for a sequence of residual partial sums processes when the observations come

from heteroscedastic spatial linear regression models. Under a mild condition it is shown that

the limit process is a function of Brownian sheet. Several examples of the limit processes are

also discussed. The limit theorem is then applied in establishing an asymptotically Kolmogorov

type test concerning the adequacy of the fitted model. The critical regions of the test for finite

sample sizes are constructed by Monte Carlo simulation.
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1. Introduction

Let us consider an experiment performed under n× n experimental conditions taken from a regular

lattice given by

Ξn := {(ℓ/n, k/n) : 1 ≤ ℓ, k ≤ n}, n ∈ N.

Without loss of generality we consider the unit square I := [0, 1] × [0, 1] as an experimental region

instead of any compact subset of R2. For convenience we take the observations carried out in Ξn

row-wise initializing at the point (1/n, 1/n) and put them together in an n × n matrix Y(Ξn) :=

(Yℓk)
n, n
k=1,ℓ=1 ∈ Rn×n, where the observation in the point (ℓ/n, k/n) is denoted by Yℓk, 1 ≤ ℓ, k ≤ n.

Consequently, we have a sequence of observable random matrices (Y(Ξn))n≥1 ⊂ Rn×n. As usual we

furnish the vector space Rn×n with the Euclidean inner product

⟨A,B⟩Rn×n := trace(A⊤B), A,B ∈ Rn×n.

Let f1, . . . , fp : I → R be known, real-valued regression functions defined on I. For a real-valued

function f defined on I, let f(Ξn) := (f(ℓ/n, k/n))n, n
k=1,ℓ=1 ∈ Rn×n. Our aim is to construct an

asymptotic test procedure for the hypothesis

H0 : Y(Ξn) =

p∑
i=1

βifi(Ξn) + En vs.H1 : Y(Ξn) = g(Ξn) + En, (1)

where (β1, . . . , βp)
⊤ =: β ∈ Rp is a vector of unknown parameters, En := (εℓk)

n, n
k=1,ℓ=1 is an n × n

random matrix whose components are independent, real-valued random variables εℓk, 1 ≤ ℓ, k ≤
11
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n, defined on a common probability space (Ω,F ,P) having mean 0 and variance σ2
ℓk, 0 < σ2

ℓk <

∞, 1 ≤ ℓ, k ≤ n, and g : I → R is the unknown true regression function. Thus, under null-

hypothesis we consider a heteroscedastic linear model, while under the alternative we assume a

non-parametric heteroscedastic regression model. It is worth mentioning that under H0 and H1 we

need not to assume any specific distribution for the random errors εℓk, 1 ≤ ℓ, k ≤ n. Under the

assumption f1(Ξn), . . . , fp(Ξn) are linearly independent in Rn×n, the corresponding matrix of least

squares residuals of the observations under H0 is given by

Rn := (rℓk)
n, n
k=1,ℓ=1 = En −

p∑
i=1

⟨fi(Ξn),En⟩Rn×nfi(Ξn)

⟨fi(Ξn), fi(Ξn)⟩Rn×n

.

Recently, for a fixed n ≥ 1, MacNeill and Jandhyala [7], and Xie and MacNeill [11] define an

operator Tn : Rn×n 7→ C(I), given by

Tn(A)(z1, z2) :=

[nz2]∑
k=1

[nz1]∑
ℓ=1

aℓk

+ (nz1 − [nz1])

[nz2]∑
ℓ=1

a[nz1]+1,ℓ + (nz2 − [nz2])

[nz1]∑
k=1

ak,[nz2]+1

+ (nz1 − [nz1])(nz2 − [nz2])a[nz1]+1,[nz2]+1, (z1, z2) ∈ I,

for every A = (aℓk)
n,n
k=1,ℓ=1, where [t] := max{n ∈ N : n ≤ t}, t ∈ R and Tn(A)(t, s) = 0, if t = 0

or s = 0. Here C(I) is the space of continuous functions on I furnished with the supremum norm.

By the operator Tn, the matrix of the least squares residuals is induced into a stochastic process

{Tn(Rn)(t, s) : (t, s) ∈ I} having sample paths in C(I). Let us call this process residual partial sums

process. It is common in practice to test (1) by investigating a functional of the residual partial

sums process such as a Kolmogorov type statistic, defined by Kn := max1≤ℓ,k≤nTn(Rn)(ℓ/n, k/n).

Therefore in order to establish this test problem we need to investigate the limit process of the

sequence {Tn(Rn)(t, s) : (t, s) ∈ I}n≥1 under H0 as well as under H1. In MacNeill and Jandhyala

[7] and in Xie and MacNeill [11] the limit process of this sequence was derived explicitly in which

homoscedasticity was assumed, i.e. σ2
ℓk = σ2, for 1 ≤ ℓ, k ≤ n. It was shown therein that under the

condition of the regression functions are continuously differentiable, the limit process is a complicated

function of the Brownian sheet. In Somayasa [10] the limit process of such a sequence was also derived

by generalizing the approach of Bischoff [4] from one to higher dimensional case. In contrast to the

result of MacNeill and Jandhyala [7] and Xie and MacNeill [11], Somayasa [10] got the structure of

the limit process as a projection of the Brownian sheet onto its reproducing kernel Hilbert space. In

this paper we establish the limit process of the heteroscedastic linear regression model defined above,

see Section 2. In Section 3 we discuss examples of the limit process corresponding to polynomial

models. In Section 4 we construct the critical region of the Kolmogorov type test.

2. Residual partial sums limit process

In the sequel we characterize the heteroscedasticity of the regression model by defining a function

h : I → R>0, such that σ2
ℓk = h(ℓ/n, k/n), 1 ≤ ℓ, k ≤ n, n ∈ N, where h is assumed to be a function

of bounded variation in the sense of Vitali, see Clarkson and Adams [5].

Definition 2.1. A stochastic process {Bh(t, s) : (t, s) ∈ I} is called a h-Brownian sheet on C(I), if
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1. Bh(t, s) = 0 almost surely (a.s.), if t = 0 or s = 0.

2. For every rectangle [t1, t2]× [s1, s2] ⊂ I, 0 ≤ t1 ≤ t2 ≤ 1, 0 ≤ s1 ≤ s2 ≤ 1,

∆[t1,t2]×[s1,s2]Bh ∼ N
(
0,

∫
[t1,t2]×[s1,s2]

h dλI

)
,

where ∆[t1,t2]×[s1,s2]Bh := Bh(t2, s2)−Bh(t1, s2)−Bh(t2, s1) +Bh(t1, s1), and λI is the Lebesgue

measure on I. Random variable ∆[t1,t2]×[s1,s2]Bh is called the increment of Bh over [t1, t2]×[s1, s2].

3. For any two rectangles I1 ⊂ I, I2 ⊂ I with I1 ∩ I2 = ∅, ∆I1Bh and ∆I2Bh are mutually

independent.

We refer the reader to MacNeill and et al. [?] for the existence of such a process. In case h is a

constant function, Bh is the Brownian sheet whose existence has been studied by Yeh [12], Kuelbs

[6], and Park [9]. As a consequent of Definition 2.1, the covariance function of Bh is given by

KBh
(t1, s1; t2, s2) := Cov(Bh(t1, s1), Bh(t2, s2)) =

∫
[0,t1∧t2]×[0,s1∧s2]

h dλI,

(t1, s1), (t2, s2) ∈ I, where x ∧ y stands for the minimum between x and y.

Theorem 2.1. Let (En)n≥1, En := (εℓk)
n,n
k=1,ℓ=1 be a sequence of n × n random matrix such that εℓk

are mutually independent with E(εℓk) = 0 and V ar(εℓk) = h(ℓ/n, k/n), 1 ≤ ℓ, k ≤ n, n ≥ 1. Then
1
n
Tn(En)

D−→ Bh, as n → ∞, in C(I). Here D−→ stands for the convergence in distribution (weakly),

see Billingsley [2], p. 23.

Proof. See MacNeill and et al. [?].

Theorem 2.2. Let f1, . . . , fp be continuous and have bounded variation in the sense of Hardy (Clark-

son and Adams [5]) on I. If f1, . . . , fp are linearly independent in L2(I, λI), where L2(I, λI) is the

Hilbert space of squared integrable functions on I with respect to λI, then

1

n
Tn(Rn)

D−→ Bh,f̃ , as n → ∞, in C(I),

where

Bh,f̃ (t, s) := Bh(t, s)−
(∫

[0,t]×[0,s]

f̃⊤ dλI

)
W−1

(∫ (R)

I

f̃ dBh

)
, (t, s) ∈ I,∫

[0,t]×[0,s]

f̃⊤ dλI :=

(∫
[0,t]×[0,s]

f1 dλI, . . . ,

∫
[0,t]×[0,s]

fp dλI

)
∫ (R)

I

f̃ dBh :=

(∫ (R)

I

f1 dBh, . . . ,

∫ (R)

I

fp dBh

)⊤

.

Here W :=
(∫

I
fifj dλI

)p,p
i=1,j=1

∈ Rp×p is invertible. Furthermore Bh,f̃ is a process with the covariance

function given by

KBh,f̃
(t, s; t′, s′) := Cov

(
Bh,f̃ (t, s), Bh,f̃ (t

′, s′)
)

=

∫
[0,t∧t′][0,s∧s′]

h dλI −
(∫

[0,t′]×[0,s′]

f̃⊤ dλI

)
W−1

(∫
[0,t]×[0,s]

f̃h dλI

)
−
(∫

[0,t]×[0,s]

f̃⊤ dλI

)
W−1

(∫
[0,t′]×[0,s′]

f̃h dλI

)
+

(∫
[0,t]×[0,s]

f̃⊤ dλI

)
W−1

(∫
I

fifjh dλI

)p, p

i=1,j=1

W−1

(∫
[0,t′]×[0,s′]

f̃ dλI

)
.
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Here and in the sequel
∫ (R)

denotes Riemann-Stieltjes integral, see Young [13] and Somayasa [10],

p. 115.

Proof. The proof of Theorem 2.2 in Bischoff [3] and the result of Bischoff [4] can be extended to the

case of higher experimental regions.

3. Examples

In this section we discuss several examples of the residual partial sums limit processes of constant,

first-order and second-order regression models.

3.1. Constant regression model

As a simple case, we consider a constant model, i.e. Y(Ξn) = βf1(Ξn) +En, where β is an unknown

parameter and f1(t, s) = 1, for (t, s) ∈ I. Then the residual partial sums limit process of this model

is given by

Bh,f̃0
(t, s) := Bh(t, s)− tsBh(1, 1), (t, s) ∈ I,

which is the standard Brownian bridge when h is constant, see e.g. McNeill and Jandhyala [7] and

Somayasa [10], p. 20.

3.2. First order regression model

Let us consider a first-order regression model

Y(Ξn) = β1f1(Ξn) + β2f2(Ξn) + β3f3(Ξn) + En,

where β1, β2 and β3 are unknown parameters, f1(t, s) = 1, f2(t, s) = t and f3(t, s) = s, for (t, s) ∈ I.

Associated to this model we have

W =

 1 1/2 1/2

1/2 1/3 1/4

1/2 1/4 1/3

 and W−1 =

 7 −6 −6

−6 12 0

−6 0 12

 .

Then the residual partial sums limit process of this model is given by

Bh,f̃1
(t, s) :=Bh(t, s)− (7ts− 3t2s− 3ts2)Bh(1, 1)

− (−6ts+ 6t2s)

(
Bh(1, 1)−

∫
[0,1]

Bh(t, 1)dt

)
− (−6ts+ 6ts2)

(
Bh(1, 1)−

∫
[0,1]

Bh(1, s)ds

)
, (t, s) ∈ I.

3.3. Second order regression model

For the third example we consider a second-order polynomial model

Y(Ξn) = β1f1(Ξn) + β2f2(Ξn) + β3f3(Ξn) + β4f4(Ξn) + β5f5(Ξn) + β6f6(Ξn) + En,
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where β1, β2, β3, β4, β5 and β6 are unknown parameters, f1(t, s) = 1, f2(t, s) = t, f3(t, s) = s,

f4(t, s) = t2, f5(t, s) = ts, f6(t, s) = s2, for (t, s) ∈ I. Accordingly the matrix W and W−1 are given

by

W =



1 1/2 1/2 1/3 1/4 1/3

1/2 1/3 1/4 1/4 1/6 1/6

1/2 1/4 1/3 1/6 1/6 1/4

1/3 1/4 1/6 1/5 1/8 1/9

1/4 1/6 1/6 1/8 1/9 1/8

1/3 1/6 1/4 1/9 1/8 1/5


,

W−1 =



26 −54 −54 30 36 30

−54 228 36 −180 −72 0

−54 36 228 0 −72 −180

30 −180 0 180 0 0

36 −72 −72 0 144 0

30 0 −180 0 0 180


.

Let y1, y2, y3, y4, y5, y6 : I → R be functions of I defined by y1(t, s) := 26ts− 27t2s− 27ts2 + 10t3s+

9t2s2 + 10ts3, y2(t, s) := −54ts+ 114t2s+ 18ts2 − 60t3s− 18t2s2 − 60ts3, y3(t, s) := −54ts+ 18t2s+

114ts2 − 18t2s2 − 60ts3, y4(t, s) := 30ts− 90t2s+ 60t3s, y5(t, s) := 36ts− 36t2s− 36ts2 + 36t2s2 and

y6(t, s) := 30ts−90ts2+60ts3. The residual partial sums limit process of this model can be expressed

by

Bh,f̃2
(t, s) := Bh(t, s)− y1(t, s)Bh(1, 1)

− y2(t, s)

(
Bh(1, 1)−

∫
[0,1]

Bh(t, s)dt

)
− y3(t, s)

(
Bh(1, 1)−

∫
[0,1]

Bh(1, s)ds

)
− y4(t, s)

(
Bh(1, 1)−

∫
[0,1]

2Bh(t, 1)tdt

)
− y5(t, s)

(
Bh(1, 1)−

∫
[0,1]

Bh(t, 1)dt−
∫
[0,1]

Bh(1, s)ds+

∫
[0,1]

Bh(t, s)dtds

)
− y6(t, s)

(
Bh(1, 1)−

∫
[0,1]

2Bh(1, s)sds

)
, (t, s) ∈ I.

4. Kolmogorov type test

Kolmogorov type test for Hypotheses (1) is a test based on the statisticKn,f := max0≤ℓ,k≤n
1
n

∑l
i=0

∑k
j=0 rij.

We put rij = 0 if i = 0 or j = 0. We note that by the property of the partial sums, it holds

Kn,f = sup0≤t,s≤1
1
n
Tn(Rn)(t, s)

Theorem 4.1. For a fixed α ∈ (0, 1), let c̃α be the α-quantile of sup0≤t,s≤1 Bh,f̃ (t, s), i.e. a constant

such that P
{
sup0≤t,s≤1 Bh,f̃ (t, s) ≤ c̃α

}
= α. Then an asymptotically size α test based on Kn,f is given

by

reject H0 if and only if Kn,f ≥ c̃1−α.
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Proof. Let χ ⊂ Rn×n be the sample space of the model. We define a sequence of non randomized test

(δn)n≥1, where δn : χ → {0, 1}, such that for Yn ∈ χ,

δn(Yn) := 1{Yn:sup0≤t,s≤1
1
n
Tn(Yn−Xn(X⊤

nXn)−1X⊤
nYn)≥c̃1−α},

where 1A is the indicator function of A. Then by Theorem 2.1 and by the continuity of supremum

function, we have

lim
n→∞

E0(δn) = P
{

sup
0≤t,s≤1

1

n
Tn

(
En −Xn(X

⊤
nXn)

−1X⊤
nEn

)
≥ c̃1−α

}
= P

{
sup

0≤t,s≤1
Bh,f̃ (t, s) ≥ c̃1−α

}
= α,

where E0 is the expectation operator under H0. The proof is complete because the expression

limn→∞ E0(δn) = α holds uniformly under H0.

Since the quantile c̃(1−α) of sup0≤t,s≤1 Bh,f̃ (t, s) can not be calculated analytically we approximate

the finite sample size quantile of Kn,f by Monte Carlo simulations generated according to following

algorithm.

step 1 : Fix n0 ∈ N.
step 2 : Generate M i.i.d. pseudo random matrices E

(j)
n0 := (εℓkj)

n0, n0

k=1,ℓ=1, with independent components

generated from N (0, h(ℓ/n0, k/n0)) random variables, 1 ≤ ℓ, k ≤ n0, j = 1, . . . ,M .

step 4 : Calculate the matrix of residuals R
(j)
n0 by the equation

R(j)
n0

= E(j)
n0

−
p∑

i=1

⟨fi(Ξn0),E
(j)
n0 ⟩Rn0×n0fi(Ξn0)

⟨fi(Ξn0), fi(Ξn0)⟩Rn0×n0

.

step 5 : Calculate the statistic K
(j)
n0,f

:= max0≤k,ℓ≤n0 Tn0

(
R

(j)
n0

)
(ℓ/n0, k/n0).

step 6 : Calculate the simulated (1−α)-quantiles of sup0≤t,s≤1Bh,f̃ (t, s): Let K
(M :j)
n0,f

be the j’th smallest

observation, i.e. K
(M :1)
n0,f

≤ . . . ≤ K
(M :j)
n0,f

≤ K
(M :j+1)
n0,f

≤ . . . ≤ K
(M :M)
n0,f

, then the simulated

(1− α)-quantile is given by

c̃(1−α) =


K

(M :M(1−α))
n0,f

, if M(1− α) ∈ N,

K
(M :[M(1−α)]+1)
n0,f

, otherwise,

where [M(1− α)] = max{k ∈ N : k ≤ M(1− α)}.

The simulation results obtained by using the statistical software package R 2.0.1 are presented

in Table 1 for α = 0.005, 0.010, 0.025, 0.050, 0.100, 0.150, 0.200, 0.250, 0.360 and 0.500, with the

corresponding sample size n0 = 30 and the number of replications M = 106.

5. Concluding remark

This paper discusses an extension of some existing functional central limit theorems for least squares

residual partial sums processes of spatial linear regression model, where the experimental design is

restricted to a regular lattice. In practice such a type of experimental design is sometimes difficult to be

realized because of economic, technical or ecological reasons. In forthcoming paper the consideration

will be extended to the problem of arbitrary experimental design by applying the uniform central

limit theorem for set-indexed partial-sum processes with finite variance of Alexander and Pyke [1].
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Models c̃0.5000 c̃0.6500 c̃0.7500 c̃0.8000 c̃0.8500

Constant 0.3740 0.4409 0.4839 0.5139 0.5200

First order 0.3691 0.3963 0.4101 0.4179 0.4306

Second order 0.3295 0.3674 0.3873 0.3982 0.4233

Models c̃0.9000 c̃0.9500 c̃0.9750 c̃0.9900 c̃0.9950

Constant 0.6342 0.6857 0.7381 0.8209 0.8540

First order 0.4631 0.4798 0.5107 0.5425 0.5538

Second order 0.4380 0.4479 0.4867 0.4976 0.4977

Table 1. The simulated c̃(1−α), for h(t, s) = ts, (t, s) ∈ I.

References

[1] Alexander, K.S., and R. Pyke (1986). A uniform central limit theorem for set-indexed partial-sum

processes with finite variance. Annals of Probability, 14, 582-597.

[2] Billingsley, P. (1968). Convergence of Probability Measures. John Wiley & Sons, Inc., New York,

Singapore, Berlin, Brisbane.

[3] Bischoff, W. (1998). A functional central limit theorem for regression models. Ann. Stat., 26

(4), 1398-1410.

[4] Bischoff, W. (2002). The structure of residual partial sums limit processes of linear regression

models. Theory of Stochastic Processes, 2 (24), 23-28.

[5] Clarkson, J.A. and Adams, C.R. (1933). On definition of bounded variation for functions of two

variables. Transactions of the American Mathematical Society, 35 (4), 824-854.

[6] Kuelbs, J. (1968). The invariance principle for a lattice of random variables. The Ann. of Math.

Stat., 39 (2), 382-389.

[7] MacNeill, I.B. and Jandhyala, V.K. (1993). Change point methods for spatial data. Multivariate

Environmental Statistics, eds. By G.P. Patil and C.R. Rao. Elsevier Science Publisher B.V.,

298-306.

[8] MacNeill, I.B., Mao, Y. and Xie, L. (1994). Modeling heteroscedastic age-period-cohort cancer

data. The Canadian Journal of Statistics, 22 (4), 529-539.

[9] Park, W.J. (1971). Weak convergence of probability measures on the function space. J. of Mul-

tivariate Analysis, 1, 433-444.

[10] Somayasa, W. (2007). Model-checks based on least squares residual partial sums processes, Ph.

D. Thesis, Faculty of Mathematic, Karlsruhe Institute of Technology.

[11] Xie, L. and MacNeill, I.B. (2006). Spatial residual processes and boundary detection. South

African Statist. J., 40 (1), 33-53.

[12] Yeh, J. (1960). Wiener measure in a space of functions of two variables. Trans. Amer. Math.

Soc., 95, 433-450.

[13] Young, W.H. (1917). On multiple integration by parts and the second theorem of mean. The

Ann. Math. Stat., 43 (4), 1235-1246.


