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Abstract: Information about inflation plays an important role in economic policy. The gov-

ernment of the Republic of Indonesia has put a great deal of effort into controlling the infla-

tion rate. This research aims to forecast Indonesia’s inflation rate using deep autoregres-

sive and to compare it with other models such as deep state space, simple feed forward, 

and seasonal naive. This study compares eighteen deep autoregressive network models. 

Each model differs only in its hyperparameter settings such as the number of epochs, the 

number of layers, the number of cells, and the number of batch sizes.  In order to check 

for consistency each model was replicated ten times. In total there are 180 runs for each 

configuration including the replication. Similarly, each of the deep state space and sim-

ple feed forward model was replicated ten times to ensure consistency. The seasonal 

naive, however, did not need this replication. The results showed that the deep auto-

regressive model with 50 epochs, 4 layers, 40 cells, 32 batch sizes produced the smallest 

root mean squared error at 0.218565. This root mean squared error was also the small-

est among the other models such as deep state space (0.28734), simple feed forward 

(0.350449), and seasonal naive (0.336056). Hence, deep autoregressive was the pre-

ferred forecasting model. In conclusion, using deep autoregressive the median forecasts 

fluctuated but below 1 percent. 

 

Keywords: deep autoregressive networks, deep learning, deep state space, simple feed 

forward, seasonal naive, Indonesia inflation rate forecasting 
 

 

1. Introduction 

One of the key indicators in the economic stability of a country is inflation. According 

to Oner (2022) “inflation has plunged countries into long periods of instability”. This sug-

gests that information about inflation is important not only because of its role in under-

standing the economy, but also the key to understand the future economic stability of a 

country.  
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Forecasting Indonesia’s inflation rate has been an active research area during the last 

decade. The time series methodology used in forecasting the inflation rate can be classified 

into three: statistical-based methods, fuzzy logic-based methods, and machine learning 

methods. Popular statistical-based methods for Indonesia’s inflation rate forecasting in-

clude autoregressive integrated moving average (ARIMA) such as the works of Hartati 

(2017), Yusnitasari (2020), Melyani et al. (2021), Qalbi et al. (2021), Amaly et al., (2022), 

Saragih & Sembiring (2022), Asmarani (2023), Nanlohy & Loklomin (2023), and Mus-

lihin & Ruchjana (2023) among others; exponential smoothing such as the works of Ris-

mawanti & Darsyah (2018), Purwanti & Purwadi (2019), Sudibyo et al., (2020), and Sar-

agih & Sembiring (2022) among others. In the ARIMA methodology the steps usually 

include routine such as specifying the order of the ARIMA, model selection, model diag-

nostic, and forecasting. The specification of the order of the ARIMA models can be prob-

lematic since there may be many candidate models whereas in exponential smoothing the 

selection of optimal smoothing coefficient can be obtained through trial and error.  

The second popular method used in forecasting the inflation rate in Indonesia is the 

fuzzy time series method. Researchers in this area include the works of  Udin et al. (2020), 

Qalbi et al. (2021), Kadry et al. (2022),  and Fireza & Ahmad (2023). Fuzzy time series 

rely on correct fuzzy logical relationship.  

The third popular method is machine learning which usually deploys conventional neu-

ral networks such as the works of Estiko & S. (2019), Rifa’i (2021), Amaly et al. (2022), 

and Wiranto & Setiawan (2023) among others. The conventional neural networks require 

authors to manually set the activation functions, hidden layers, and other settings to obtain 

optimum results.  

Machine learning is a computer algorithm that runs on a computer that can learn pat-

terns from data. One of the purposes of machine learning is to make a prediction. This 

prediction is commonly done through artificial neural networks (or just neural networks).  

Neural networks try to mimic how the human brain works. The conventional machine 

learning does this by constructing pattern recognition. This conventional machine learning 

usually involves data transformation, selecting activation functions, determining the num-

ber of hidden layers, and determining the architecture of neural networks. Domain exper-

tise is often required in this case. In the conventional machine learning, the activation 

functions give nonlinearity to neural networks, while the hidden layers serve as input for 

the next layers. The architectures of neural networks provide means of various types of 

learning.  

Recent advances in the machine learning, especially deep learning, have allowed re-

searchers to make use of a variety of data types such as images, text, audio, and video to 

be predicted. The popularity of deep learning stems from its ability to learn from data with 

minimum human intervention. The various studies cited in Ao & Fayek (2023) suggest 

the superiority of the deep learning over the conventional machine learning. This 
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superiority is achieved through deploying hundreds of thousands of hidden layers. One 

particular feature that distinguishes the deep learning from the conventional machine 

learning is automatization. The conventional machine learning techniques have limita-

tions in processing natural data in their raw form (LeCun et al., 2015). In the deep learning 

the focus is on tuning the hyperparameters of the proposed model.  

Due to its nature, the order of time series data is preserved, for instance the data is not 

exchangeable. One particular neural networks architecture that is suitable for time series 

data is recurrent neural networks (RNN). However, RNN suffers from the vanishing gra-

dient problem (Van Houdt et al., 2020). Modern RNN architectures that can fix the van-

ishing gradient problem are long short-term memory (LSTM) and gated recurrent unit 

(GRU). LSTM has been proven to be more effective than conventional RNN (LeCun et 

al., 2015). Furthermore, LSTM is the RNN architecture of choice for probabilistic deep 

learning models such as deep autoregressive (DeepAR) and deep state space (DeepSS).  

The deep autoregressive (DeepAR) of Salinas et al. (2020) aims at producing accurate 

probabilistic forecast. The DeepAR methodology relies on training autoregressive recur-

rent networks. These recurrent networks are usually of LSTM-type. However, a simpler 

version of LSTM called gated recurrent unit (GRU) is also possible. Thus, the type of 

recurrent networks in DeepAR is either LSTM or GRU. Free and open-source software 

such as Python-based GluonTS of Alexandrov et al. (2019) and Alexandrov et al. (2020) 

provides full support for the two types of RNN.   

The article is organized as follows. The first section provides motivation for forecasting 

monthly Indonesia’s rate of inflation and surveys current research about methodologies 

for forecasting inflation. The next section discusses DeepAR methodology and some other 

competing models.  Section three provides results and discussions. Section four concludes 

the article.  

 

 

2. Research Methodology 

 

Salinas et al. (2020) proposed deep autoregressive (DeepAR) that aims at producing 

accurate probabilistic forecast. The DeepAR methodology relies on training autoregres-

sive recurrent networks. The model learns a global model from historical data of all time 

series data in the dataset (Salinas et al., 2020). More specifically, the model utilizes RNN 

architecture such as LSTM or GRU. In this research LSTM is preferred over GRU for its 

ability in capturing long-term dependency. See also studies in Irie et al. (2016) and Ca-

huantzi et al. (2023).  

Figure 1 shows an LSTM cell with input gate (𝑖𝑡), forget gate (𝑓𝑡), and output gate (𝑜𝑡). 

https://doi.org/10.24843/JMAT.2024.v14.i01.p170


I Wayan Sumarjaya, Made Susilawati / A Comparative Analysis of Deep Autoregressive… 

40 

 

 
Figure 1. An LSTM cell with input gate, forget gate, and output gate. 

 

As can be seen from Figure 1, the values of input gate (𝑖𝑡), forget gate (𝑓𝑡), and output 

gate (𝑜𝑡) are computed by three connected layers with sigmoid activation functions 𝜎 

(Zhang et al., 2023). The tanh activation function ensures the hidden state ℎ𝑡  takes the 

value (−1,1). For more details about LSTM see for example Van Houdt et al. (2020), 

Lindemann et al. (2021), and Zhang et al. (2023). 

In the following discussion about DeepAR we follow Salinas et al. (2020) with slight 

modification on symbols. Suppose that the value of time series 𝑖 at time 𝑡 is denoted by 

𝑦𝑖,𝑡. The goal is to model conditional distribution  

𝑃(𝒚𝑖,𝑡0:𝑇|𝒚𝑖,1:𝑡0−1, 𝒙𝑖,1:𝑇) (1) 

of the future of each time series 𝒚𝑖,𝑡0:𝑇 ≔ [𝑦𝑖,𝑡0
, 𝑦𝑖,𝑡0+1, … , 𝑦𝑖,𝑇] given its past 𝒚𝑖,1:𝑡0−1 ≔

[𝑦𝑖,1, 𝑦𝑖,0, … 𝑦𝑖,𝑡0−2, 𝑦𝑖,𝑡0−1]. In equation (1), 𝑡0 denotes the time point from which it is 

assumed that 𝑦𝑖,𝑡 is unknown at prediction time and 𝒙𝑖,1:𝑇 are covariates that are assumed 

to be known for all time points. It is assumed that the distribution of   

𝑄Θ(𝒚𝑖,𝑡0:𝑇|𝒚𝑖,1:𝑡0−1, 𝒙𝑖,1:𝑇)  can be written as product of likelihood of the form 

𝑄Θ(𝒚𝑖,𝑡0:𝑇|𝒚𝑖,1:𝑡0−1, 𝒙𝑖,1:𝑇) =  ∏ 𝑄Θ

𝑇

𝑡=𝑡0

(𝑦𝑖,𝑡|𝑦𝑖,1:𝑡−1, 𝒙𝑖,1:𝑇)  

= ∏ 𝑝 (𝑦𝑖,𝑡|𝜃(𝒉𝑖,𝑡, Θ))

𝑛

𝑖

 

(2) 

which is parametrized by the output 𝒉𝑖,𝑡 of the form 𝒉𝑖,𝑡 = ℎ(𝒉𝑖,𝑡−1, 𝑦𝑖,𝑡−1, 𝑥𝑖,𝑡, Θ). Here 

ℎ is a function that is a multilayer RNN, for instance LSTM (see Figure 1).  

Steps in forecasting the monthly Indonesia’s inflation rate are as follows. 
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1. Plot the monthly inflation rate  

The plot of the inflation rate usually contains information about trend, seasonality, 

outliers, and any unusual patterns in the data. This information then can be used to 

make further analysis on the forecasts. 

2. Descriptive statistics  

Describing some descriptive statistics such as minimum, maximum, mean, me-

dian, and quantiles are often helpful to get better insight from the data.  

3. Feature engineering  

These steps include splitting the data into training and testing, say 70% and 30%, 

and data normalization if needed. The main goal of this splitting, as recommended 

by Gholamy et al. (2018), is to avoid overfitting. 

4. Setting up hyperparameters  

At this stage some hyperparameters might need to be setup such as the number of 

epochs, the number of layers, the number of cells, batch sizes, and distribution 

output. Since there are no hard-and-fast rules for determining the hyperparameters, 

the hyperparameters are chosen with the aim to minimize overfitting and reduce 

computational cost. Thus, we arrived at the following hyperparameter: 

i. number of epochs: 50, 100, 150, and 200;  

ii. number of layers: 2, 3, 4; 

iii. number of cells: 40, 50, 60; 

iv. batch sizes: 32, 64.  

Note that there are 18 hyperparameter settings for each epoch. This can be ex-

plained as follows. Suppose the number of epochs is 50, there are three layers (2, 

3, 4), there are three number of cells (40, 50, 60), and two batch sizes (32, 64). 

From this epoch there are 1 × 3 × 3 × 2 = 18 combination of hyperparameter set-

tings. This combination also applies to other epochs. The name of each configura-

tion corresponds to DeepAR (abbreviated DAR) model 𝑖. For example, for the 

number of epochs equals 50, the DAR1 corresponds to DeepAR model with the 

number of layers 2, the number of cells 40, and the batch sizes 32. Similarly, the 

DAR18 consist of number of layers 4, the number of cells 60, and the batch sizes 

64. This naming convention also applies to other epochs. Thus, for the number of 

epochs equal 200, the DAR1 corresponds to the DeepAR model with the number 

of layers 2, the number of cells 40, and the batch sizes 32. Table 1 shows the hy-

perparameter settings for the eighteen DAR models. Again, note that these models 

differ only in the number of epochs. 

 
Table 1. DeepAR Models with Hyperparameter Settings  

Model Number of layers Number of cells Batch sizes 

DAR 1 2 40 32 

DAR 2 2 40 64 

DAR 3 2 50 32 

DAR 4 2 50 64 

DAR 5 2 60 32 

DAR 6 2 60 64 
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DAR 7 3 40 32 

DAR 8 3 40 64 

DAR 9 3 50 32 

DAR 10 3 50 64 

DAR 11 3 60 32 

DAR 12 3 60 64 

DAR 13 4 40 32 

DAR 14 4 40 64 

DAR 15 4 50 32 

DAR 16 4 50 64 

DAR 17 4 60 32 

DAR 18 4 60 64 

Here the number of layers refers the number of LSTM layers, the number of cells 

refers to the number of LSTM cells for each layer, and the batch sizes refer to the 

size of batches used in the training and prediction.  

5. Training and testing the model  

For each of hyperparameters settings, the training and testing are replicated ten 

times to ensure consistency.  

6. Forecasting 

The root mean square error (RMSE) is used as a measure of forecast accuracy. The 

RMSE of the deep autoregressive models is compared with the other competing 

models such deep state space, simple feed forward, dan seasonal naive.  

In this research the performance of DeepAR is compared with other models such as 

deep state space, simple feed forward, and seasonal naive. The deep state space of (Ran-

gapuram et al., 2018), another probabilistic deep learning method, models the data accord-

ing to  

𝑝(𝒚1:𝑇
(𝑖)

|𝒙1:𝑇𝑖

(𝑖)
, Φ) = 𝑝𝑆𝑆(𝒚1:𝑇𝑖

(𝑖)
|Θ1:𝑇𝑖

(𝑖)
) (3) 

where 𝑝𝑝𝑝 denotes the marginal likelihood under a linear state space which is defined as 

𝑝𝑆𝑆(𝒚1:𝑇𝑖

(𝑖)
|Θ1:𝑇𝑖

(𝑖)
) = 𝑝(𝑦𝑖

(𝑖)
|Θ1

(i)) ∏ 𝑝(𝑦𝑡
(𝑖)

|𝑦1:𝑡−1
(𝑖)

, Θ1:𝑡
(𝑖)

).

𝑇

𝑡=2

 

(4) 

In equation (3), Θ𝑡
(𝑖)

 is time varying parameters. Furthermore, the parameters of the state 

space model Θ𝑡
(𝑖)

 is computed via the recurrent neural network function 𝒉𝑡
(𝑖)

=

ℎ(𝒉𝑡−1
(𝑖)

, 𝒙𝑡
(𝑖)

, Φ). 

Another model that was considered in this research was the simple feed-forward net-

works (FFN). This FFN is basically a simple multi-layer perceptron (MLP) that was 

trained using whole dataset (Makridakis et al., 2018).   

The last model that was considered in this research was seasonal naive that was imple-

mented in Alexandrov et al. (2020) . This models the series as 

�̃�(𝑇 + 𝑙) = 𝑦(𝑇 + 𝑙 − 𝑠) (5) 

where 𝑇 is the forecast time, 𝑠 is the season length, and 𝑙 = 0, … , 𝑛 − 1. Here 𝑛  is the 

prediction length. If 𝑛 > 𝑠, then the season is repeated multiple times.  
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In order to compare the accuracy of those four models the root mean squared error 

(RMSE) was used. This RMSE is defined as  

RMSE = √1

𝑛
∑ (𝑦𝑖 − �̂�𝑖)2𝑛

𝑖=1  . 
(6) 

Here 𝑛 denote the number of observations, 𝑦 denote observations, and �̂� denote the pre-

dicted values. The advantage of using RMSE is that it has the same scale with the series 

and it is robust to outliers (Koutsandreas et al., 2022). This study follows Salinas et al. 

(2020) in that �̂� denote the predicted median values. 
 

 

3. Results and Discussions 

 

In this research the GluonTS of Alexandrov et al. (2020) was used in modelling and 

forecasting the Indonesian inflation rate. The software ran both on localhost and on 

Google Colaboratory. Jupyter Notebook was used as the computing platform that allows 

users to code, to manipulate, and to convert various file formats.  

Figure 2 shows the monthly Indonesia inflation rate from January 1978 to April 2022. 

As can be seen from the figure, the rate has extrema at some points, but otherwise look 

stationary.  

 

 
Figure 2. Plot of the Indonesian inflation rate from January 1978 to April 2022 

 

The inflation reached a peak at 12.76 percent in February 1998 which was strongly 

related to the economic crisis during that time. There are two more peaks worthy to note: 

the one on July 1998 (at 8.56 percent) and the other one on October 2005 (at 8.7%). Look-

ing in more details at the data, the 1989 saw the lowest rate of inflation at -4.53 percent.  

 

 
Figure 3. Plot of the Indonesian inflation rate with extrema points shown in red dots. 
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Table 2 summaries the descriptive statistics of the inflation rate throughout the four 

decades.  

 

Table 2. Descriptive Statistics  
Mean Standard  

Deviation 

Minimum 25% 50% 75% Maximum 

0.718985 1.210475 -4.53 0.13 0.455 0.93 12.76 

 

As can be seen from Table 2, the mean is larger than the median. This suggests that  

the inflation rate is rightly skewed. The median of inflation rate is approximately 0.5 per-

cent.  

The next step was feature engineering. Based on study in Gholamy et al. (2018), the 

data was split into training (70 percent) and testing (30 percent). This splitting aimed to 

obtain better accuracy and avoid overfitting. Specifically, the inflation rate from January 

1978 to December 2008 were the training data set, while the testing data started from 

January 2009 to April 2022. Figure 3 shows the training (dark blue) and testing data (or-

ange).  

 

 
Figure 3. Plot of training data (in blue) and testing data (in orange).  

 

Based on hyperparameter configurations in Table 1, the next step was to training and 

testing the models. Each model was executed both in localhost and in cloud, i.e., Google 

Colaboratory, and was repeated ten times to ensure consistency. It took 5—7 hours for 

one run. Table 3—5 list the RMSE values for each DeepAR model.   

Table 3 shows RMSE values for DeepAR (DAR 1 to DAR 18) models. 

 

Table 3. RMSE Values for Epoch Equals 50 
Model Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10 

DAR 1 0.317614 0.309161 0.306674 0.293830 0.305772 0.300959 0.314762 0.302108 0.262321 0.281506 

DAR 2 0.306219 0.297990 0.316872 0.304903 0.303254 0.288397 0.304205 0.274916 0.288743 0.308438 

DAR 3 0.337765 0.357402 0.339177 0.381367 0.339900 0.371025 0.302200 0.292312 0.343702 0.276909 

DAR 4 0.289336 0.337862 0.351306 0.430639 0.364866 0.390863 0.337978 0.342361 0.317310 0.424000 

DAR 5 0.332866 0.376746 0.320159 0.339308 0.419357 0.392557 0.290768 0.278509 0.343095 0.380025 

DAR 6 0.364176 0.389930 0.306796 0.354915 0.370278 0.361754 0.286701 0.413559 0.301474 0.320430 

DAR 7 0.499842 0.273018 0.386497 0.400895 0.309781 0.318686 0.315459 0.298293 0.287979 0.344904 

DAR 8 0.372474 0.382282 0.308242 0.329491 0.358737 0.380598 0.349630 0.369443 0.359362 0.341940 
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DAR 9 0.331416 0.405092 0.362811 0.290188 0.366699 0.414145 0.351266 0.355339 0.318569 0.468836 

DAR 10 0.492864 0.352287 0.279800 0.406719 0.244334 0.364978 0.360313 0.388407 0.354070 0.402968 

DAR 11 0.436598 0.434068 0.394674 0.347134 0.429010 0.574953 0.435929 0.276156 0.375429 0.271837 

DAR 12 0.426436 0.381947 0.409521 0.411895 0.474065 0.611994 0.402436 0.485465 0.476788 0.533566 

DAR 13 0.498284 0.415508 0.500602 0.354785 0.330303 0.218565 0.323817 0.523003 0.382354 0.527157 

DAR 14 0.474622 0.392635 0.469889 0.308384 0.320830 0.469451 0.451374 0.430991 0.493335 0.531682 

DAR 15 0.451387 0.433600 0.454015 0.286293 0.293743 0.432763 0.450927 0.402470 0.523399 0.532556 

DAR 16 0.448691 0.451255 0.386928 0.390762 0.448700 0.691879 0.430478 0.468398 0.457985 0.289701 

DAR 17 0.478482 0.285666 0.470660 0.590003 0.435568 0.607273 0.352392 0.407704 0.411419 0.717300 

DAR 18 0.599063 0.609363 0.666988 0.575343 0.273620 0.560479 0.590278 0.313811 0.378752 0.529570 

 

As can be seen from Table 3, the smallest RMSE is achieved by DAR 13 (see Table 1 

for the details of hyperparameter settings) on the sixth run at 0.218565 (highlighted in 

bold). Table 4 shows RMSE values for epoch equals 100. The smallest RMSE value is 

achieved by DAR 17 at 0.229062 (highlighted in bold). 

 

Table 4. RMSE Values for Epoch Equals 100 
Model Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10 

DAR 1 0.265950 0.308572 0.279576 0.265090 0.274590 0.296468 0.281116 0.259341 0.291985 0.314305 

DAR 2 0.470014 0.522559 0.236752 0.510035 0.300995 0.450139 0.435761 0.424059 0.510408 0.378726 

DAR 3 0.332606 0.287613 0.411581 0.349135 0.337759 0.361104 0.367371 0.307404 0.673508 0.322393 

DAR 4 0.379688 0.374468 0.434132 0.382588 0.318243 0.324781 0.394430 0.426091 0.400175 0.305051 

DAR 5 0.380918 0.483723 0.520154 0.350029 0.317199 0.307455 0.506411 0.444640 0.330239 0.413108 

DAR 6 0.341298 0.287421 0.381445 0.342654 0.429770 0.412719 0.397891 0.352922 0.444793 0.719359 

DAR 7 0.342331 0.474262 0.475847 0.451400 0.275051 0.400920 0.640682 0.427831 0.375531 0.439820 

DAR 8 0.405394 0.338952 0.436858 0.316741 0.392914 0.422532 0.403969 0.439470 0.407749 0.501722 

DAR 9 0.742244 0.502284 0.470180 0.322253 0.412216 0.431448 0.409925 0.575907 0.389968 0.408164 

DAR 10 0.378908 0.373765 0.284617 0.421750 0.397964 0.327392 0.427432 0.296213 0.492612 0.280997 

DAR 11 0.344448 0.369279 0.277906 0.385458 0.336327 0.443025 0.284452 0.258659 0.409194 0.377493 

DAR 12 0.719623 0.499944 0.583190 0.618173 0.261763 0.380859 0.515033 0.655327 0.261816 0.464304 

DAR 13 0.538125 0.405359 0.357253 0.435073 0.341867 0.454693 0.379356 0.403762 0.380581 0.703169 

DAR 14 0.321088 0.320173 0.313014 0.371480 0.318690 0.557548 0.422981 0.356628 0.333968 0.350448 

DAR 15 0.316245 0.350573 0.314890 0.396257 0.304519 0.560910 0.466060 0.355940 0.368064 0.354497 

DAR 16 0.241868 0.452229 0.423942 0.366509 0.450344 0.398044 0.372857 0.471954 0.376209 0.317370 

DAR 17 0.346805 0.275832 0.430380 0.286376 0.289424 0.436569 0.229062 0.526409 0.296551 0.451998 

DAR 18 0.512824 0.379425 0.563748 0.361984 0.456919 0.775952 0.417182 0.647197 0.623466 0.335106 

 

Table 5 contains RMSE values for epoch equals 150. In this setting, the smallest RMSE 

is achieved by DAR 9 on the tenth run at 0.257854 (highlighted in bold). 

   

Table 5. RMSE Values for Epoch Equals 150 
Model Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10 

DAR 1 0.285575 0.358732 0.306646 0.325979 0.338432 0.362360 0.351053 0.358920 0.283742 0.308268 

DAR 2 0.288758 0.272763 0.384886 0.396732 0.371763 0.341018 0.328804 0.301975 0.305865 0.315157 

DAR 3 0.575138 0.401380 0.277330 0.340559 0.346982 0.435525 0.331567 0.349752 0.429843 0.425787 

DAR 4 0.306759 0.400804 0.481443 0.365940 0.370672 0.366338 0.352784 0.650164 0.535620 0.339668 

DAR 5 0.336779 0.332993 0.309706 0.370935 0.563885 0.333553 0.447668 0.410626 0.324740 0.306009 

DAR 6 0.402613 0.358640 0.363700 0.313064 0.400371 0.451577 0.349704 0.370639 0.316810 0.345606 

DAR 7 0.545996 0.380983 0.381072 0.372448 0.271845 0.372693 0.305008 0.331316 0.270528 0.611340 

DAR 8 0.337631 0.482281 0.264475 0.517108 0.325671 0.434251 0.326594 0.451940 0.418313 0.297580 

DAR 9 0.481815 0.576095 0.432489 0.532070 0.374078 0.275887 0.560564 0.412469 0.305170 0.257854 

DAR 10 0.377458 0.470343 0.431058 0.441781 0.473640 0.598524 0.335916 0.456994 0.408120 0.351306 

DAR 11 0.554044 0.368573 0.726049 0.524560 0.318058 0.341357 0.527009 0.425026 0.431565 0.334513 

DAR 12 0.421421 0.601397 0.652900 0.431712 0.433326 0.465526 0.311294 0.512543 0.441739 0.474546 

DAR 13 0.367051 0.403070 0.444820 0.329255 0.474392 0.432492 0.378855 0.442000 0.320936 0.404724 

DAR 14 0.304039 0.463083 0.319265 0.487654 0.400917 0.382977 0.483388 0.430346 0.385051 0.342318 
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DAR 15 0.302302 0.462505 0.321894 0.430761 0.405400 0.393552 0.484181 0.405028 0.370600 0.343288 

DAR 16 0.391861 0.362476 0.437432 0.365363 0.282134 0.436781 0.613258 0.463808 0.452265 0.330510 

DAR 17 0.430347 0.611273 0.366050 0.448697 0.431357 0.548656 0.649802 0.415294 0.405516 0.483858 

DAR 18 0.329232 0.433340 0.382667 0.515018 0.323156 0.747460 0.488332 0.445409 0.565922 0.785081 

 

Table 6 lists RMSE values for epoch equals 200. The smallest RMSE in this setting is 

achieved by DAR 15 on the third run at 0.222143 (highlighted in bold). 

 

Table 6. RMSE Values for Epoch Equals 200 
Model Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10 

DAR 1 0.447461 0.372106 0.341088 0.315047 0.328073 0.345760 0.305854 0.382979 0.457037 0.413096 

DAR 2 0.330191 0.341704 0.377589 0.330375 0.383521 0.331075 0.317915 0.453882 0.352808 0.345809 

DAR 3 0.450878 0.278263 0.395717 0.347092 0.473111 0.316858 0.395291 0.340395 0.340667 0.352289 

DAR 4 0.388730 0.336464 0.367751 0.348395 0.593076 0.372872 0.462732 0.348219 0.401593 0.437111 

DAR 5 0.349545 0.264744 0.366815 0.550055 0.330749 0.321232 0.538661 0.305216 0.356934 0.361641 

DAR 6 0.449242 0.348516 0.598830 0.456327 0.486678 0.429122 0.422985 0.442061 0.463316 0.479412 

DAR 7 0.446407 0.457296 0.339763 0.282373 0.424506 0.417358 0.340753 0.506834 0.300659 0.437505 

DAR 8 0.309921 0.548189 0.601084 0.614135 0.455836 0.481137 0.557362 0.337543 0.336549 0.328104 

DAR 9 0.385897 0.397578 0.338701 0.379585 0.269196 0.236563 0.375584 0.343175 0.389407 0.489726 

DAR 10 0.723735 0.454514 0.390780 0.361191 0.281158 0.419942 0.444579 0.304734 0.621242 0.434477 

DAR 11 0.504088 0.438947 0.449609 0.432153 0.462658 0.406054 0.678947 0.487215 0.344998 0.336521 

DAR 12 0.435170 0.303224 0.493280 0.528651 0.505379 0.385246 0.427239 0.292252 0.368242 0.614583 

DAR 13 0.562600 0.396963 0.656181 0.706909 0.337236 0.253804 0.399090 0.448885 0.415895 0.460445 

DAR 14 0.323853 0.357540 0.222547 0.352882 0.444174 0.455539 0.429200 0.382352 0.514199 0.473389 

DAR 15 0.329255 0.353904 0.222143 0.351385 0.441663 0.453026 0.434622 0.386044 0.545503 0.474050 

DAR 16 0.483481 0.426216 0.330604 0.415785 0.363181 0.437443 0.343265 0.459599 0.431832 0.444365 

DAR 17 0.372719 0.491972 0.307150 0.422434 0.428813 0.369715 0.469807 0.632944 0.246757 0.255241 

DAR 18 0.334982 0.567418 0.371870 0.406682 0.349036 0.442105 0.350631 0.430492 0.485384 0.382346 

 

As can be seen from Tables 3—6, the smallest RMSE is achieved by DAR 13 on the 

sixth run at 0.218565 (highlighted in bold). This DAR 13 corresponds to the number of 

epochs equals 50, the number of layers equals 4, the number of cells equals 40, and the 

batch size equals 32. This RMSE also the smallest among other competing models such 

as deep state space (Table 7), simple feed-forward (Table 8), and seasonal naive.  

 

Table 7. RMSE Values for Deep State Space (DSS) 
Epochs Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10 

50 0.359365 0.301276 0.301872 0.365233 0.424525 0.287340 0.301276 0.478826 0.417870 0.396166 

100 0.357950 0.434968 0.394559 0.358319 0.358607 0.532757 0.571228 0.386906 0.439717 0.497993 

150 0.447518 0.363252 0.372764 0.404966 0.411262 0.290104 0.432599 0.413087 0.503382 0.371575 

200 0.661428 0.312687 0.432330 0.475475 0.495799 0.451847 0.325782 0.604501 0.499192 0.629215 

 

As with the DeepAR, the deep state space (DSS) models were run ten times to ensure 

consistency. As can be seen from Table 7, the smallest RMSE value is at run 6 with the 

number of epochs equals 50. Table 8 summarizes RMSE values for simple feed-forward 

(SFF). The SFF models compete quite well with DeepAR and DSS.  

 

Table 8. RMSE Values for Simple Feed-Forward (SFF) 
Epochs Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10 

50 0.365199 0.368222 0.365288 0.363144 0.361732 0.361983 0.368896 0.369558 0.361296 0.363355 

100 0.354422 0.360085 0.352488 0.368279 0.354707 0.358639 0.362032 0.350449 0.365157 0.355787 
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150 0.365013 0.38156 0.369951 0.376117 0.363430 0.361013 0.354662 0.370218 0.369914 0.353486 

200 0.363377 0.361456 0.353084 0.357774 0.357841 0.360260 0.361795 0.358244 0.355145 0.360406 

 

As can be seen from Table 8, the RMSE value at 0.350449 is achieved by SFF with 

the number of epochs equal 100 on the eight runs. Finally, the seasonal naïve (SN) per-

forms quite well.  It is slightly better (RMSE at 0.336056) than SFF in this case. Since the 

DeepAR has the smallest RMSE among the other competing models, we then proceeded 

to forecast the monthly inflation rate. 

  
Table 9. Median predictions of inflation rate forecast 

May 2022 June 2022 July 

2022 

August 

2022 

Septem-

ber 2022 

October 

2022 

Novem-

ber 2022 

December 

2022 

January 

2023 

February 

2023 

0.25 0.30 0.75 0.8125 0.7 0.6875 0.5 0.375 0.125 0.125 

 

The median inflation rate forecasts from May 2022 to February 2023 can be seen in 

Table 9 and plot graphically in Figure 4. 

 

 
Figure 4. The median inflation forecast for May 2022 to February 2023 (blue line).  

 

The median forecast of the rate of inflation for May 2022 to February 2023 suggests that 

the rate fluctuates below 1 percent, but otherwise stationary.   

In this research the authors note the following. First, while there is no fix rule on how 

to set hyperparameters optimally, increasing the number of epochs does not guarantee 

smaller RMSE. Next, the other models such as deep state space performs quite well which 

is indicate by the RMSE value close to the selected deep autoregressive models. Finally, 

the authors also note that the inflation rate forecasts fluctuate which is in agreement in the 

authors’ previous study. However, due to its stochastic nature during the sampling, the 

forecasts results obtained by probabilistic deep learning model such as deep autoregres-

sive and deep state space may differ considerably. For future work, different hyperparam-

eters settings are possible to improve the prediction of deep autoregressive networks. 

 

 

4. Conclusions 

 

This study concludes the following. First, deep autoregressive (DeepAR) outperforms 

the other competing models (DeepSS, SFF, and SN) in terms of RMSE. More spesifically 
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DeepAR with the following hyperparameter settings: the number of epochs equals 50, the 

number of layers equal 4, the number of cells equals 40, and the batch size equals 32. 

Second, as can be seen from Table 9 and Figure 4, the forecasts of inflation rate fluctuate 

below 1 percent, but otherwise look stationary. This results also inline with our 

previous research, see for example Sumarjaya & Susilawati (2023) 

 

 

Acknowledgment 

 

We would like to thank Universitas Udayana for funding this research. This research 

is under the DIPA PNBP Universitas Udayana year 2022 based on Research Grant Con-

tract number B/78.820/UN14.4.A/PT.01.03/2022, on 19 April 2022. The authors would 

like to thank two anonymous reviewers for their helpful comments.  

 

 

References 

 

Alexandrov, A., Benidis, K., Bohlke-Schneider, M., Flunkert, V., Gasthaus, J., 

Januschowski, T., Maddix, D. C., Rangapuram, S., Salinas, D., Schulz, J., Stella, 

L., Türkmen, A. C., & Wang, Y. (2019). GluonTS: Probabilistic time series models 

in Python. http://arxiv.org/abs/1906.05264 

Alexandrov, A., Benidis, K., Bohlke-Schneider, M., Flunkert, V., Gasthaus, J., 

Januschowski, T., Maddix, D. C., Rangapuram, S., Salinas, D., Schulz, J., Stella, 

L., Türkmen, A. C., & Wang, Y. (2020a). GluonTS: Probabilistic and neural time 

series modeling in Python. Journal of Machine Learning Research, 21(116), 1–6. 

http://jmlr.org/papers/v21/19-820.html 

Alexandrov, A., Benidis, K., Bohlke-Schneider, M., Flunkert, V., Gasthaus, J., 

Januschowski, T., Maddix, D. C., Rangapuram, S., Salinas, D., Schulz, J., Stella, 

L., Türkmen, A. C., & Wang, Y. (2020b). GluonTS: Probabilistic and Neural Time 

Series Modeling in Python. In Journal of Machine Learning Research (Vol. 21). 

https://github.com/awslabs/gluon-ts 

Amaly, M. H., Hirzi, R. H., & Basirun, B. (2022). Perbandingan metode ANN 

backpropagation dan ARMA untuk peramalan inflasi di Indonesia. Jambura Jour-

nal of Probability and Statistics, 3(2). https://doi.org/10.34312/jjps.v1i1.15440 

Ao, S. I., & Fayek, H. (2023). Continual deep learning for time series modeling. 

Sensors, 23(16), 7167–7167. https://doi.org/10.3390/s23167167 

Asmarani, T. E. (2023). Peramalan inflasi dengan menggunakan metode ARIMA: Studi 

di Indonesia. Journal on Education, 5(2), 4684–4692. https://jonedu.org/in-

dex.php/joe/article/view/1200/944 

Cahuantzi, R., Chen, X., & Güttel, S. (2023). A comparison of LSTM and GRU net-

works for learning symbolic sequences. Lecture Notes in Networks and Systems, 

739 LNNS. https://doi.org/10.1007/978-3-031-37963-5_53 



Jurnal Matematika Vol. 14, No.1, Juni 2024, pp. 37-51                                                       ISSN: 1693-1394 

Article DOI: 10.24843/JMAT.2024.v14.i01.p170  

 

49 

 

Estiko, F. I., & S., W. (2019). Analysis of Indonesia’s inflation using ARIMA and artifi-

cial neural network. Economics Development Analysis Journal, 8(2). http://jour-

nal.unnes.ac.id/sju/index.php/edaj 

Fireza, A. F., & Ahmad, D. (2023). Implementasi fuzzy time series logika Lee untuk 

peramalan inflasi di Indonesia. Lebesgue: Jurnal Ilmiah Pendidikan Matematika, 

Matematika Dan Statistika, 4(2), 1084–1092. https://doi.org/10.46306/lb.v4i2.386 

Gholamy, A., Kreinovich, V., & Kosheleva, O. (2018). Why 70/30 or 80/20 relation be-

tween training and testing sets: A pedagogical explanation. International Journal of 

Intelligent Technologies and Applied Statistics, 11(2), 105–111. 

https://doi.org/10.6148/IJITAS.201806_11(2).0003 

Hartati, H. (2017). Penggunaan metode ARIMA dalam meramal pergerakan inflasi. 

Jurnal Matematika Sains Dan Teknologi (JMST), 18(1), 1–10. 

https://doi.org/10.33830/jmst.v18i1.163.2017 

Irie, K., Tüske, Z., Alkhouli, T., Schlüter, R., & Ney, H. (2016). LSTM, GRU, highway 

and a bit of attention: An empirical overview for language modeling in speech 

recognition. Proceedings of the Annual Conference of the International Speech 

Communication Association, INTERSPEECH, 08-12-September-2016. 

https://doi.org/10.21437/Interspeech.2016-491 

Kadry, I. R. Al, Massalesse, J., & Nur, Muh. (2022). Forecasting inflation in Indonesia 

using the modified fuzzy time series Cheng. Jurnal Matematika, Statistika Dan 

Komputasi, 19(1), 210–222. https://doi.org/10.20956/j.v19i1.21868 

Koutsandreas, D., Spiliotis, E., Petropoulos, F., & Assimakopoulos, V. (2022). On the 

selection of forecasting accuracy measures. Journal of the Operational Research 

Society, 73(5), 937–954. https://doi.org/10.1080/01605682.2021.1892464 

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–

444. https://doi.org/10.1038/nature14539 

Lindemann, B., Müller, T., Vietz, H., Jazdi, N., & Weyrich, M. (2021). A survey on 

long short-term memory networks for time series prediction. Procedia CIRP, 99, 

650–655. https://doi.org/10.1016/j.procir.2021.03.088 

Makridakis, S., Spiliotis, E., & Assimakopoulos, V. (2018). Statistical and machine 

learning forecasting methods: Concerns and ways forward. PLOS ONE, 13(3), 

e0194889. https://doi.org/10.1371/journal.pone.0194889 

Melyani, C. A., Nurtsabita, A., Shafa, G. Z., & Widodo, E. (2021). Peramalan inflasi di 

Indonesia menggunakan metode autoregressive moving average (ARMA). Journal 

of Mathematics Education and Science, 4(2), 67–74. 

https://doi.org/10.32665/james.v4i2.231 

Muslihin, K. R. A., & Ruchjana, B. N. (2023). Model autoregressive moving average 

(ARMA) untuk peramalan tingkat inflasi di Indonesia. Limits: Journal of Mathe-

matics and Its Applications, 20(2), 209–218. https://doi.org/10.12962/lim-

its.v20i2.15098 

Nanlohy, Y. W. A., & Loklomin, S. B. (2023). Model autoregressive integrated moving 

average (ARIMA) untuk meramalkan inflasi Indonesia. Variance: Journal of Sta-

tistics and Its Applications, 5(2), 201–208. https://doi.org/10.30598/variance-

vol5iss2page201-208 

https://doi.org/10.24843/JMAT.2024.v14.i01.p170


I Wayan Sumarjaya, Made Susilawati / A Comparative Analysis of Deep Autoregressive… 

50 

 

Oner, C. (2022). Inflation: prices on the rise. Finance & Development, 30–31. 

https://www.imf.org/-/media/Files/Publications/Fandd/Back-to-Basics/oner-infla-

tion.ashx 

Purwanti, D., & Purwadi, J. (2019). Metode Brown’s double exponential smoothing da-

lam peramalan laju inflasi di Indonesia. Jurnal Ilmiah Matematika, 6(2), 54. 

https://doi.org/10.26555/konvergensi.v6i2.19548 

Qalbi, A., Nurfadilah, K., & Alwi, W. (2021). Comparison of fuzzy time series methods 

and autoregressive integrated moving average (ARIMA) for inflation data. Eigen 

Mathematics Journal, 4(2), 40–50. https://doi.org/10.29303/emj.v4i2.122 

Rangapuram, S. S., Seeger, M., Gasthaus, J., Stella, L., Wang, Y., & Januschowski, T. 

(2018). Deep state space models for time series forecasting. In S. Bengio, H. Wal-

lach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, & R. Garnett (Eds.), Advances 

in Neural Information Processing Systems. Curran Associates, Inc. https://proceed-

ings.neurips.cc/paper_files/paper/2018/file/5cf68969fb67aa6082363a6d4e6468e2-

Paper.pdf 

Rifa’i, A. (2021). Prediksi inflasi Indonesia berdasarkan fuzzy ANN menggunakan 

algoritma genetika. Jurnal Eltikom: Jurnal Teknik Elektro, Teknologi Informasi 

Dan Komputer, 5(1), 12–24. https://doi.org/10.31961/eltikom.v5i1.215 

Rismawanti, Y., & Yamin Darsyah, M. (2018). Perbandingan peramalan metode moving 

average dan exponential smoothing Holt Winter untuk menentukan peramalan 

inflasi di Indonesia. In D. Cahyandari, H. D. Santoso, A. H. Saptadi, A. Yanto, & 

E. Yuliyanto (Eds.), Prosiding Seminar Nasional Mahasiswa Unimus (Vol. 1, pp. 

330–335). Lembaga Penelitian dan Pengabdian Masyarakat Universitas 

Muhammadiyah Semarang. 

https://prosiding.unimus.ac.id/index.php/mahasiswa/article/download/167/170 

Salinas, D., Flunkert, V., Gasthaus, J., & Januschowski, T. (2020). DeepAR: Probabilis-

tic forecasting with autoregressive recurrent networks. International Journal of 

Forecasting, 36(3), 1181–1191. https://doi.org/10.1016/j.ijforecast.2019.07.001 

Saragih, S. M., & Sembiring, P. (2022). Analisis perbandingan metode ARIMA dan 

double exponential smoothing dari Brown pada peramalan inflasi di Indonesia. 

Journal of Fundamental Mathematics and Applications (JFMA), 5(2), 176–191. 

https://doi.org/10.14710/JFMA.V5I2.15312 

Sudibyo, N. A., Iswardani, A., Septyanto, A. W., & Wicaksono, T. G. (2020). Prediksi 

inflasi di Indonesia menggunakan metode moving average, single exponential 

smoothing dan double exponential smoothing. Lebesgue: Jurnal Ilmiah Pendidikan 

Matematika, Matematika Dan Statistika, 1(2), 123–129. 

https://doi.org/10.46306/lb.v1i2 

Sumarjaya, I. W., & Susilawati, M. (2023). Forecasting monthly inflation rate in 

Denpasar using long short-term memory. Jurnal Matematika, 13(1), 11–24. 

https://doi.org/10.24843/JMAT.2023.v13.i01.p157 

Udin, A. C., & Jatipaningrum, M. T. (2020). Peramalan inflasi di Indonesia 

menggunakan metode fuzzy time series based average dan fuzzy time series 

Saxena-Easo (Studi  kasus: data inflasi di Indonesia). Jurnal Statistika Industri Dan 

Komputasi, 05(2), 1–10. 

https://ejournal.akprind.ac.id/index.php/STATISTIKA/article/view/2871/2183 



Jurnal Matematika Vol. 14, No.1, Juni 2024, pp. 37-51                                                       ISSN: 1693-1394 

Article DOI: 10.24843/JMAT.2024.v14.i01.p170  

 

51 

 

Van Houdt, G., Mosquera, C., & Nápoles, G. (2020). A review on the long short-term 

memory model. Artificial Intelligence Review, 53(8), 5929–5955. 

https://doi.org/10.1007/s10462-020-09838-1 

Wiranto, A. R., & Setiawan, E. (2023). Implementasi metode backpropagation neural 

network dalam meramalkan tingkat inflasi di Indonesia. MATHunesa: Jurnal 

Ilmiah Matematika, II(1), 8–16. 

Yusnitasari, A. (2020). Peramalan inflasi Indonesia dengan menggunakan metode 

ARIMA Box-Jenkins. Jurnal Paradigma Multidisipliner (JPM), 1(2), 152–159. 

https://smkn1magelang.sch.id/jpm/index.php/jpm/article/view/25 

Zhang, A., Lipton, Z. C., Li, M., & Smola, A. J. (2023). Dive into deep learning. Cam-

bridge University Press. https://d2l.ai/d2l-en.pdf 

  

 

 

https://doi.org/10.24843/JMAT.2024.v14.i01.p170

