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Abstract 

Remote sensing is an advanced tool that provides electromagnetic information about the Earth's surface and 

atmosphere. In ecological studies, the applications of vegetation indices (VIs) derived from remote sensing data have 

continued to increase, especially in capturing and monitoring vegetation properties and environmental changes. This 

study reviews the application of VIs with special focus on red-edge based indices in the evaluating coastal landscapes 

and other conservation studies. The spectral characteristics of vegetation is briefly reviewed in order to exploit the 

potential information of the reflectance spectrum, and the possible key role of vegetation indices in future research of 

coastal vegetation as well as resilience indicator in the ever-changing landscapes.  
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Abstrak 

Penginderaan jauh adalah salah satu teknologi yang mampu menyajikan informasi tangkapan gelombang 

elektromagnetik tentang permukaan dan atmosfer Bumi. Pada studi-studi yang terkait dengan ekologi, 

pengaplikasian indeks-indeks vegetasi yang diperoleh dari data penginderaan jauh terus mengalami peningkatan, 

terutama terkait dengan kemampuannya menangkap dan memonitor sifat-sifat tutupan vegetasi serta perubahan 

lingkungan. Studi ini mencoba mereview secara singkat berbagai pemanfaatan indeks-indeks vegetasi, khususnya 

indeks vegetasi yang berbasis atau menggunakan panjang panjang gelombang red-edge terkait dengan 

kemampuannya mengevaluasi lanskap pantai dan studi konservasi lainnya. Karakteristik pantulan spektral vegetasi 

ditinjau secara mendalam untuk mengetahui kemampuannya dalam memberikan informasi sifat-sifat vegetasi, serta 

kemungkinan peran dari indeks-indeks vegetasi tersebut untuk penelitian-penelitian selanjutnya, khusus terkait 

dengan vegetasi pantai serta indikator ketahanan lanskap yang selalu berubah. 

Kata Kunci: indeks berbasis red-edge; vegetasi pesisir; lingkungan yang dinamis; cakupan berulang; penelitian konservasi 

 

 

1. Introduction  

Remote sensing is one of the most cost-effective 

approaches that provide valuable insights for 

investigating and interpolating earth surface 

features and detecting change (Medina et al., 2019; 

Pettorelli et al., 2013). Remotely-sensed data using 

both airborne and satellite platforms have raised a 

novel prospect as proxies of ecosystems 

properties, including conservation and monitoring 

of biodiversity, forestry, agriculture, coastal and 

marine ecosystems, and other related fields 

(Hossain et al., 2019; Goetz & Dubayah 2011; 

Zolkos et al., 2013). In recent decades, 

hyperspectral sensors have offered both relatively 

higher spectral and spatial resolution than 

previously available, allowing the extraction of 

more detailed information on spectral variability 

of the landscape features (Salas & Henebry, 2014; 

Weng et al., 2008; Thenkabail et al., 2000). 

https://doi.org/10.24843/jmas.2019.v05.i02.p13
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Advances in remote sensing sensors combined 

with machine learning algorithms have proved to 

be the most robust approaches for detecting, 

mapping, and monitoring complex nature patterns 

and dynamic of vegetation as well as their 

biophysical and structural properties (Klemas, 

2012; Husnayaen et al., 2018; Verrelst et al., 2019). 

Numerous approaches have been developed 

for the purpose of extracting remote sensing 

information relevant to particular indicator of 

earth components across large spatial extents (Li 

et al., 2018; Pettorelli et al. 2005). Vegetation 

Indices (VIs) derived from remote sensing data 

are among advanced approaches and techniques 

developed by scientists and practitioners for 

quantitative and qualitative evaluation of 

vegetation, such as vegetation cover, vigor, 

growth stages, forest health and dynamics 

(Kross et al., 2015; Pettorelli et al., 2005; Zhang et 

al., 2018). Vegetation indices (VIs) are spectral 

transformations of two or more bands designed to 

enhance spectral features sensitive to a vegetation 

characteristic and enable data interpretation of 

vegetation surface, allowing reliable spatial and 

temporal inter-comparisons of vegetation and 

other earth components, including phenological, 

biophysical, and structural parameters of 

vegetation (Li et al., 2018; Xu et al., 2019). 

In this study, we present an overview on the 

application of vegetation indices (VIs) in recent 

ecological and conservation studies. Particular 

emphasis was given to the potential use of red-

edge spectral reflectance-based indices for 

investigating and mapping coastal vegetation.  

2. Challenges in mapping and monitoring coastal 

vegetation  

Coastal ecosystems provide imperative functions 

that support a diverse array of life forms and 

numerous goods and services to human well-being 

and the environment.  These services include 

biodiversity, regulation (nutrient regulation, 

climate regulation, carbon sequestration, 

detoxification of polluted waters), provision 

(energy resources, natural products, supply of 

food), support (buffering from natural hazards, 

marine life nursery functions, shoreline 

stabilisation), tourism and cultural services 

(recreation, culture and amenity) (Barbier et al., 

2011; Nehren et al., 2016; Unsworth  et al., 2018). 

Despite such benefits and services, coastal zones 

are currently identified as one of the most 

threatened ecosystems. Degradation of coastal 

ecosystems cause biodiversity loss, landscape 

modifications, and habitat degradation; and 

thereby threatens the capacity of coastal 

ecosystems to provide good and services that 

contribute to human wellbeing (Husnayaen et al., 

2018; Ferrol-Schulte, et al. 2015; Gilman et al., 

2008). 

Coastal ecosystems are increasingly being 

threatened by human pressure, such as tourism, 

urban development, pollution, and farming 

practices (Ciccarelli, 2014). Environmental changes 

will cause serious long-term consequences along 

with the potential impacts of climate change 

relevant to coastal ecosystems, including variations 

in temperature and associated rise in sea level, 

changes in precipitation, ocean circulation, wave 

conditions, storm surge, and ocean acidification 

due to higher levels of CO2 (Lotze at al., 2006). In 

this case, anthropogenic climate change can alter 

the atmospheric composition, resulting in 

variations and change the intricate dynamics of the 

coastal landscapes (Frosini et al., 2012). Moreover, 

natural forcing drivers, such as coastal hazards 

(e.g., coastal erosion, flooding), can drive the 

probability and severity of which is expected to 

increase with climate change (Delgado-Fernandez 

et al., 2019). Under the influence of complex 

mechanisms and high pressures of both natural 

and anthropogenic stressors, protecting coastal 

ecosystems therefore requires an understanding of 

the nature of coastal systems and the dynamic way 

these systems evolve to prevailing changing 

environments. 

Satellite and airborne remote sensors have great 

abilities to detect, measure, and map coastal 

ecosystems and their changes at appropriate scales 

and resolutions; minimizing the need for extensive 

field-based measurements (Carranza et al., 2008; 

Lyons et al., 2012). However, spectral responses of 

vegetation provide one of the greatest challenges 

for remote sensing interpretation in several 

ecosystems since the spectral response of 

vegetated areas presents a complex mixture of 

vegetation, soil brightness, environmental effects, 

shadow, soil color and moisture (Ollinger, 2011), 

especially in coastal systems. Coastal ecosystems 

exhibit vegetation mosaic and complex 

relationships between the physical and biological 
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processes that form dynamic geomorphic 

structures at with extreme variations in spatial 

complexity and temporal variability (Pinna et al., 

2019). Due to their unique position between 

marine and terrestrial environment, coastal zones 

constitute complex transitional systems subjected 

to variety of natural process and environmental 

drivers such as topography, soil salinity, substrate 

instability, marine aerosol, wind and aeolian 

processes (De Luca et al., 2011). The recent 

development of remote sensing sensors and data 

analysis techniques offer an opportunity to detect 

and monitor biophysical features of landscape 

components, particularly coastal vegetation. 

3. Spectral Characteristics Of Vegetation And 

Red Edge Indices  

The spectral signatures, patterns and 

heterogeneity recorded by remote-sensing 

techniques have been widely exploited for 

investigating and interpolating vegetation 

properties. The main electromagnetic spectrum 

that are relevant to the applications of vegetation 

remote sensing are the following: (i) the visible 

spectra, which are composed of the blue (450–495 

nm), green (495-570 nm), and red (620–750 nm) 

wavelength regions; and (ii) the near and mid 

infrared band (850–1700 nm) (Figure 1).  

Numerous studies have exploited spectrum of 

possibilities associated with vegetation indices 

(VIs), and in particular the Normalized Difference 

Vegetation Index (NDVI). NDVI, which is 

computed as ratio-based vegetation indices using 

visible (red) and Near Infrared, is highly 

associated with photosynthetically active 

radiation. The reflectance within the visible 

wavelength, especially red and blue, is associated 

to absorption of two major chlorophyll pigments 

(i.e. chlorophyll a and b), whereas reflectance at 

the NIR band is highly related with the leaf 

structure (e.g. plant geometrical and internal 

biophysical structure) rather than pigment 

composition (Miller et al., 1990; Kumar et al., 2002). 

Normalized Difference Vegetation Index 

(NDVI) is the most well-known and widely used 

vegetation index, particularly in research related 

to regional and global vegetation assessments. This 

greenness index can be applied as robust indicator 

of photosynthetic capacity, leaf area index (LAI), 

net primary production, carbon assimilation and 

evapotranspiration, among other applications 

(e.g. Kawabata et al., 2001; Schloss et al., 1999). 

However, NDVI commonly saturate at moderate-

to-dense canopies. NDVI does have some 

limitations, especially when plant species or 

vegetation are reaching mature stage with 

complete canopy closure or having high biomass 

and leaf area index (LAI) (Gitelson et al., 2003).  

This index is reported to be sensitive to the effects 

of soil brightness, soil color, atmosphere, cloud 

and cloud shadow, and leaf canopy shadow (Buma 

& Lee, 2019; Xue and Su, 2017). 

 

Figure 1. Spectral reflectance curve of vegetation 

showing energy wavelength, absorption features and 

vegetation components controlling vegetation 

reflectance characteristics (Roman & Ursu, 2016). 

Red edge is also regarded as one of the most 

obvious characteristics of green vegetation, since it 

is strongly correlated with chlorophyll content 

(Baranoski & Rokne, 2005). Red edge 

approximately refers to 680 -740 nm in the 

electromagnetic spectrum, reflecting the spectrum 

of transition platform from the strong absorption 

of red light to the near-infrared multiple scattering 

of vegetation chlorophyll (Horler et al., 1983). Red 

edge parameters include red edge position, red 

edge slope, red edge area, red edge average 

refectivity, red edge amplitude, ratio of red edge 

amplitude and minimum amplitude. A high 

correlation was found between both amplitude of 

the red edge peak (drr e) and the area of the red 

edge peak (σ680–780 nm) with LAI (leaf area index), 

while the wavelength of the red edge peak (λre) 

was the best estimator of chlorophyll content 

(Filella & Penuelas, 1994).  Red-edge position is 

reported to be less sensitive to the changes of 
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canopy structure, plant coverage, and leaf 

properties (Cho et al., 2008; Pu et al., 2003). 

Table 1 

Red-edge spectral reflectance-based indices, references, 

and equations. 

Index Acronym Equation Reference 

Red-edge 

normalized 

difference 

vegetation 

index  

NDVIred 

edge 

(NIR - Red Edge)/  

(NIR + Red Edge)  

Gitelson and 

Merzlyak, 

1994 

Red-edge 

simple ratio 

vegetation 

index 

RERVI 

 

RERVI= 

ρ780/ρ730 

Cao et 

al., 2015 

Normalized 

difference red-

edge 

NDRE NDRE= 

(ρ780−ρ730)/ 

(ρ780+ρ730) 

Peng and 

Gitelson,  

2012 

Red-edge re-

normalized 

difference 

vegetation 

index 

RERDVI RERDVI= 

(ρ780−ρ730)/ 

√ρ780+ρ730) 

Cao et 

al., 2015 

Red-edge 

difference 

vegetation 

index 

REDVI REDVI= 

ρ780−ρ730 

Cao et 

al., 2015 

Red-edge soil 

adjusted 

vegetation 

index 

RESAVI RESAVI= 

1.5*[(ρ780−ρ730)/  

√(ρ780+ρ730+0.5)] 

Huete, 1988 

Red-edge 

optimal soil 

adjusted 

vegetation 

index 

REOSAVI REOSAVI= 

(1+0.16)(ρ780−ρ730)

/ (ρ780+ρ730+0.16) 

Cao et al., 

2013 

Red-edge wide 

dynamic range 

vegetation 

index 

REWDRVI REWDRVI= 

(0.15*ρ780−ρ730)/ 

(0.15*ρ780+ρ730) 

Gitelson, 

2004 

Red-edge 

chlorophyll 

index 

CIRE CIRE= ρ780/ρ730-1 Gitelson et 

al., 2005 

 

The use of red-edge based indices has been 

reported in research especially related to 

chlorophyll concentration and nutritional status. 

Table 1 shows several vegetation indices that have 

been developed on the red-edge region. The 

derivative-based red-edge indices were reported to 

be more sensitive to changes on both leaf 

chlorophyll content and the LAI at dense plant 

canopy or biomass (Pu et al., 2003; Cho et al., 

2008). This higher sensitivity can be attributed to 

derivative analysis which can magnify signal 

properties at an absorption region and also 

changes of scattering properties at longer 

wavelengths (Boochs et al., 1990). The advantage 

red-edge reflectance is highlighted due to its 

position being between the bands where strong 

absorption of light by plant pigments and high leaf 

reflection occur. However, indices that incorporate 

the reflectance of red-edge bands were mostly 

derived from narrow and field spectroradiometers, 

medium resolution spectrometers, and  airborne 

spectrographic imagers (e.g. Viña et al., 011; Nguy-

Robertson et al., 2012; Haboudane et al., 2004). 

4. Current contributions of Red Edge based 

indices to coastal vegetation mapping and 

conservation studies  

Several studies have evaluated the sensitivity of 

VIs derived from the red-edge band for mangrove 

forests. Zhu et al. (2017) developed an estimation 

model of LAI of mangrove forests based on 

WorldView-2 (WV2) imagery. They demonstrated 

that for all machine-learning algorithms used in 

their study (i.e. artificial neural network 

regression, support vector regression, and random 

forest regression), the spectral transformations of 

the red-edge band on WV2 imagery were 

consistently had the highest prediction accuracy 

compared with other traditional bands of WV2, 

such as near-infrared-1 and near-infrared-2 band. 

Similarly, Castillo et al. (2017) demonstrated that 

based on biophysical variable Leaf Area 

Index (LAI) derived from Sentinel-2, red edge-

based Inverted Red-Edge Chlorophyll Index was 

more accurate in predicting the overall above-

ground biomass of mangroves in Philippines. 

Other study highlighted the potential use of Red 

Edge NDVI for mangrove species mapping in 

Malaysia, using Maximum Likelihood Classifier 

based on the RapidEye satellite imagery (Roslani et 

al., 2014). 

Mukaromah (2017) highlighted the applicability 

of vegetation index computed using algorithm 

based on the red-edge band in combination with 

ancillary and field data to classify and map 

comprehensive cover of various vegetation on 

Rottnest Island. The Red Edge Normalized 

Vegetation Index (Red Edge NDVI), also known as 

NDVI705, is a narrowband greenness modified 

from NDVI, and is measured by the ratio of 

https://link.springer.com/article/10.1007/s11119-016-9433-1#CR3
https://link.springer.com/article/10.1007/s11119-016-9433-1#CR30
https://link.springer.com/article/10.1007/s11119-016-9433-1#CR3
https://link.springer.com/article/10.1007/s11119-016-9433-1#CR3
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/reflectance
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/narrowband
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/spectroradiometers
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/spectrometer
https://www.sciencedirect.com/science/article/pii/S0303243414001664#bib0210
https://www.sciencedirect.com/science/article/pii/S0303243414001664#bib0145
https://www.sciencedirect.com/science/article/pii/S0303243414001664#bib0145
https://www.sciencedirect.com/science/article/pii/S0303243414001664#bib0090
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/leaf-area-index
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/leaf-area-index
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/chlorophyll
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within-leaf scattering and the effect of leaves' 

chlorophyll content. The Red Edge NDVI is 

applied by using bands along the red edge instead 

of the main absorption and reflectance peaks. 

Compared to other vegetation indices, Red Edge 

NDVI provide an increased sensitivity in detecting 

plant physiological status at low coverage plant 

biomass. Testing on HyMap imagery, this study 

also demonstrated that several sites of vegetation 

have Normalized Vegetation Index (NDVI) values 

below zero. The range of NDVI values for 

vegetation should be between 0 and 1, with the 

higher value attributed to healthy-dense 

vegetation and the lower value related to sparse 

vegetation. The low value (NDVI values below 

zero) on the HyMap image in this study reflects 

the low biomass and vegetation cover of the most 

sparse and disturbed heath communities (the 

negative value of NDVI should be represented 

water and built-up area). NDVI may reflect a 

sensitive response to green vegetation even for low 

vegetation covered areas; however, this index does 

not successfully differentiate the densely vegetated 

from the sparsely vegetated area (Adams and 

Gillespie, 2006). The findings of this study 

indicated that red edge band in the HyMap 

imagery has potential for subsequent mapping 

methods, while enable the enhanced 

characterization of vegetation biophysical 

properties and land surface condition. These 

findings are vital for vegetation monitoring, 

especially those of sparse and dry heathlands. The 

Red Edge NDVI hyperspectral index is reported to 

be highly sensitive to changes in canopy foliage, 

gap fraction, and senescence phenological stages, 

and has the advantage of not being affected by leaf 

surface reflectance (Gupta et al., 2003; Jung et al., 

2006). Other studies reported that most VIs that are 

computed on the red-edge region attempt to 

minimalizing the effects of backgrounds caused by 

variations in soil reflectance (Dorigo et al., 2007; 

Glenn et al., 2008). Jung et al. (2006) also indicated 

that Red Edge NDVI is very useful as a sensitive 

environmental indicator for detecting vegetation 

stress, for instance caused by drought and disease. 

While HyMap may cost exorbitant for extensive 

planning and synoptically monitoring of large 

regions, this airborne hyperspectral sensor enables 

to evaluate fine scale landscape assessment. 

There are several existing studies that use Red 

Edge parameter to improve the precision 

agriculture and yield prediction (Cui & Kerekes, 

2018; Chlingaryan et al., 2018; Cho and Skidmore, 

2006). Based on the red-edge inflection point 

(REIP) computed from derivative analysis, Kanke 

et al. (2016) evaluated grain yield prediction of two 

rice varieties with different canopy structure and 

other agronomic parameters (biomass, N uptake 

and plant coverage). Red-edge inflection point 

(REIP) defined as the maximum of the first 

derivative reflectance between the red and NIR 

regions. They calculated REIP based on the 

maximum first derivative analysis by polynomial 

fitting technique (REIPDF), linear interpolation 

technique (REIPLI), linear extrapolation technique 

(REIPLE), and the Lagrangian technique. They 

demonstrated that REIP had a strong correlation 

with agronomic parameters (i.e.  biomass, N 

uptake, and grain yield), and this relationship is 

stronger than those of red-based indices. Van der 

Meer and De Jong (2006) also reported similar 

findings that REIP is significantly related with N 

concentration particularly at dense plant canopy 

ground coverage. Similarly, other studies also 

reported that reflectance at the REIP can be used as 

a good indicator of biomass, N content, and 

chlorophyll content (Lukas et al., 2016; Raper & 

Varco 2015). 

5. Conclusion  

Red edge-based indices have significantly 

enhanced the sensitivity of chlorophyll 

concentration and allowing biophysical 

measurements, including biomass estimation, 

nitrogen content and leaf area index (LAI). Strong 

correlation of red edge with chlorophyll content 

also provide more sensitivity to detect dry and 

sparse vegetation, making this index a useful 

indicator of environmental stress. Vegetation index 

computed using algorithm based on the red-edge 

band could also potentially be used to strengthen 

NDVI as red edge is strongly correlated with both 

leaf chlorophyll content and leaf area index (LAI), 

especially at dense plant canopy or biomass. With 

the development of remote sensing sensors, 

specific red edge indices can be developed to 

improve the capability of robustness against 

chlorophyll change, providing high-quality 

reference information and broadening research 

areas to address rapid environmental changes and 

continuous vegetation estimates in the near future, 

especially in coastal landscapes that constitute 
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complex vegetation mosaics subjected to 

constantly changing environments. 
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