PENGEMBANGAN SISTEM REKOMENDASI PENEMPATAN PRODUK SOVENIR LOKAL BALI BERDASARKAN ALGORITMA APRIORI STUDI KASUS : PASAR SENI UBUD GIANYAR, BALI
Abstract
COVID-19 membawa dampak buruk bagi sektor pendapatan masyarakat Ubud khususnya para penjual souvenir karena menurunnya kedatangan wisatawan. Pemulihan perekonomian masyarakat Ubud khususnya pemasaran souvenir harus memperbaiki beberapa aspek agar mampu menentukan strategi penjualan optimal, sehingga solusi pada penelitian ini adalah pengembangan sistem aplikasi berbasis mobile menyesuaikan kebutuhan penjual souvenir untuk mengembangkan strategi pemasaran pasca COVID-19, aplikasi ini menggunakan implementasi Algoritma Apriori sebagai keluaran rekomendasi berupa pola asosiasi dari transaksi sehingga mendapatkan suatu rules/aturan. Aplikasi dikembangkan secara Hybrid Multiplatform, front-end menggunakan Kotlin Multiplatform Mobile dan Webview, sedangkan back-end menggunakan PHP dan Database MySql. Berdasarkan Evaluasi Aturan Asosiasi dengan tools WEKA menggunakan 25 transaksi dan set minimum support sebesar 0,1 atau 10%, aturan asosiasi sistem sama dengan aturan/rules yang dihasilkan aplikasi WEKA dengan total 42 jumlah aturan asosiasi dengan parameter tertinggi confidence 0,75 dan lift ratio 2,34. Dari hasil pengujian black box, semua fungsional yang ada aplikasi rekomendasi ini telah berhasil berjalan sebagaimana seharusnya dengan persentase keberhasilan 98% di 8 (delapan) platform Android 4 sampai android 11, dan hasil analisis kepuasan pengguna dengan skala likert sebanyak 30 responden rata-rata 86,4% pengguna sangat puas dengan keseluruhan proses sistem.
Kata Kunci: Aplikasi Mobile, Data Mining, Algoritma Apriori, Souvenir Pasar Seni Ubud, Android, IOS, Kotlin Multiplatform Mobile, WebView, PHP, MySql.