
Jurnal Elektronik Ilmu Komputer Udayana p-ISSN: 2301-5373
Volume 12, No 3. Februari 2024 e-ISSN: 2654-5101

627

Database Performance Optimization using Lazy Loading

with Redis on Online Marketplace Website

Albertus Ivan Suryawana1, Agus Muliantaraa2

aInformatics Department, Udayana University

Bali, Indonesia
1albertusivan15@gmail.com

2muliantara@unud.ac.id (Corresponding author)

Abstract

With the pandemic lasting over 2 years, many businesses start to adapting a digital approach of their
business to stay alive. While in the same time, a number of users of digital platform also skyrocketed
due to physical contact restriction policy. This causes a performance hit toward several online services
such as an online marketplace due to high network traffic from many users accessing it in the same
time, including latency issues. In this research, the authors try to implement an application-level caching
with an in-memory database, Redis, using Lazy Loading approach. Beside implementing caching,
authors also compare the performance of using cache and not using cache by load testing both
implementation using similarly built application. Based on the result, there is a performance gain of 38-
65% based on the load and scenario by using application-level caching.

Keywords: Cache, Cache-Aside Pattern, Lazy Loading, performance optimization, application-level
caching, in-memory database

1. Introduction

With the pandemic lasting over 2 years since March 2020, many businesses start to migrating their
operation to digital platform, in order to survive due to physical contact restriction policy. Some start to
use social media as an e-commerce platform, while others making their own online services from which
accessible through online. The latter is the case of a certain business called Business X, which name
cannot be disclosed, in which they start building their own online marketplace business to continue
selling several products. Over a year af ter starting an online marketplace, they start noticed a high
latency issue while navigating through the website, due to high network traf fic. The authors try to
analyze the inf rastructure used, and found out there is a bottleneck on the database due to high traffic
mention earlier. To address this issue, the authors try to implement caching into the application, in form
of application-level caching.

Caching is often being used to reduce load coming into the main memory, which commonly known to
be slow, by storing data that frequently accessed in the cache itself. Application-level is a type of caching
in which the implementation of the cache is done by the developer itself based on the condition. Usually,
this type of cache is implemented in the server-side of the application, and mostly relied on in-memory
database such as Redis[1], [2]. In order to avoid additional strain on in-memory database due to
excessive data stored inside, Cache-aside pattern or Lazy-Loading, will be used to limit when data
should be stored. Cache-aside pattern is a type of data synchronization where data is being stored in
the cache on demand[3].Consequently, instead of storing all data directly on the cache, only previously
requested data will be stored inside until its expired or an update for the that data occurred in main
database.

There are several research that has been done regarding caching such as on research done by Saldhi
et al. [1] which analyze performance difference between two Cache System namely, Inf iniSpan and
Hazelcast. In that research, the author suggests to do a comparative performance analysis across
dif ferent cache pattern. Another research with similar interest that has been done is [2] in which a
performance between MySQL database were compared with Redis as cache database. Based on the
result, there are some degree of performance gains by using Write-Through pattern that the writer has
implemented. Although [2]may be similar to this research, there is a dif ference in the type of data

Suryawan, Muliantara
Database Performance Optimization using Lazy Loading with Redis on Online Marketplace Website

628

synchronization pattern being used, where author used Cache-Aside pattern instead of Write-Through
pattern.

2. Reseach Methods

Due to the nature of the subject, the methodology used on this research mainly consist of 5 stages as
shown on Figure 1, including system requirement analysis, database modeling, cache strategy
modeling, application development, and performance analysis.

Figure 1. Research Methodology

2.1. System Requirement Analysis

System Requirement Analysis is the f irst stage of System Development Life Cycle (SDLC) where the
developer will conduct an analysis to list any requirement needed for the system. On this research,
there are 3 main feature that needed to be existed including, user registration and login; get list of
available products and get product’s detail; and checkout an order.

2.2. Database Modeling

In this research, there are 2 types of databases being used for the application, a relational database
using MySQL, and an in-memory database namely Redis. Redis is chosen due to its popularity as a
cache management system with high flexibility of usage such as shown in [4]. MySQL will be used as
the main database, where all of the data will be stored, and Redis will be used as a cache layer, where
all cached data will be store based on the cache strategy modeling being used. MySQL database
consist of 4 tables as shown in Figure 2 and Figure 3.

Figure 2. Entity Relational Diagram

Jurnal Elektronik Ilmu Komputer Udayana p-ISSN: 2301-5373
Volume 12, No 3. Februari 2024 e-ISSN: 2654-5101

629

Figure 3. Relational Database Model

Table userdata contains all user data including email, password, full name, and access privilege level.
Table orders and order_details contain all order data such as product bought, quantity, price at the time
bought, and user who ordered it. Table products contains all product data such as product name, price,
and remaining stock. While MySQL can be model af ter their table, Redis in the other hand is a key-
value database in which described as shown in Table 1. Standardized naming scheme for Redis’ key
is being implemented to keep the caching logic simple and avoid several problems in the future such
as name collisions [5]

Table 1. Redis Naming Scheme

2.3. Cache Strategy Modeling

There are several ways to implement data synchronization between main database and the cache. As
mention in the introduction, the author chooses to implemented a Cache-Aside pattern in which data is
stored in the cache when there is a request for it, and retain in the cache until its expiry time reached
or the corresponding data is updated in the database. In Figure 4, the overall f low of retrieving data
using Cache-Aside pattern is shown.

First, application will try to fetch the data f rom the cache, if the data existed, it immediately returned.
Otherwise, application will try to fetch the requested data f rom the main database, and store its value
to the cache if data found in the database, and then its value returned. In Figure 5, the overall flow of
updating data is shown, where data will be discarded from the cache after data successfully updated in
the main database. In this application, deleted data is a data in the main database that has f ield
deleted_at set to non-NULL value (i.e., timestamp of data being deleted).

Field Naming Scheme Expiry Duration
Userdata Cache user:<userdata_id> 1 Hour
Session Cache session:<session_id> 5 Minutes

User-Session Index Key user-session:<user_id> 5 Minutes
Product Detail Cache product:<product_id> 1 Hour
All Product Summary product:summary 1 Hour

Suryawan, Muliantara
Database Performance Optimization using Lazy Loading with Redis on Online Marketplace Website

630

Figure 4. Cache-Aside Data Retrieval

Figure 5. Data Update Flowchart

2.4. Application Development

In this stage, application is developed in Go Language. This language is chosen because it’s known for
the performance especially as a server-side application. There are 3 main components needed,
controller, service, and repository. Controller is part of application in which incoming requests processed
before passed to service to be consumed. Service is part of application in which the business logic lies.
In service, program will also call repository to fetch data whether it’s f rom cache or main database.
Repository is part of application which process all database-related operation, whether f rom main
database or f rom cache layer. In repository, all database connections are handled by each of ficially
supported connector driver for Go Language.

3. Result and Discussion

In this research, the performance of the proposed application is measured by running a load test
between proposed application and a similarly built application without cache being used. Load test is

Jurnal Elektronik Ilmu Komputer Udayana p-ISSN: 2301-5373
Volume 12, No 3. Februari 2024 e-ISSN: 2654-5101

631

done using k6 with fixed time of 300 seconds and virtual users, which denoted a concurrent connection
to the application in a time, of {100, 200, 500}. This load test measures the time from sending requests
to f irst byte received for 3 types of requests scenario. The overall result is shown in Figure 6

Figure 6. Overall performance of each scenario in term of request duration

3.1. Login Scenario

This scenario simulates users’ action of login with their account which simulate cold data, data that has
not been stored in the cache, being fetch and stored in the cache for future use (i.e., re-login to get new
sessionID for API authentication). Result of this interaction is shown in Table 2. Based on the result, by
implementing cache on login endpoint, results in performance gain about 28-36% depending on the
load in average. There are some performance degradations as shown by the minimum value of using
cache when interacting with 500 concurrent users of about -343% relative to using no cache.

Client Count

Request Duration (ms)

Avg Min Max Avg Min Max

Cache No Cache

100 583.58 1.68 3633.21 816.28 3.20 4859.88

200 1299.46 2.10 6024.22 1840.41 7.22 9693.84

500 2840.71 25.43 16179.62 4455.85 6.00 22780.09

Table 2. Login Scenario Load Test Result

3.2. Fetch All Products Scenario

This scenario simulates users’ action of browsing through the products catalogue which simulate
repetition of fetching the same data over and over. Result of this interaction is shown in Table 3. Based
on the result, by implementing cache on fetch all product endpoint, results in performance gain about
38-53% depending on the load in average.

174.84

391.19

906.17

174.83

363.12

596.14

583.58

1299.46

2840.71

365.99

634.95

1739.25

302.03

581.10

1693.27

816.28

1840.41

4455.85

0.00 500.00 1000.00 1500.00 2000.00 2500.00 3000.00 3500.00 4000.00 4500.00 5000.00

100

200

500

Request Duration in microseconds

C
li

en
t C

o
u

n
ts

Login Fetch Products Fetch All Products

Login (Cache) Fetch Products (Cache) Fetch All Products (Cache)

Suryawan, Muliantara
Database Performance Optimization using Lazy Loading with Redis on Online Marketplace Website

632

Client Count

Request Duration (ms)

Avg Min Max Avg Min Max

Cache No Cache

100 174.84 0.51 2767.48 365.99 1.04 1837.42

200 391.19 1.00 4810.10 634.95 0.77 6466.26

500 906.17 1.16 9499.17 1739.25 1.00 12837.18

Table 3. Fetch All Products Scenario Load Test Result

3.3. Fetch Product’s Detail Scenario

This scenario simulates users’ action of browsing details for product they have interest with, which
simulates random repetition of fetching the same data. Result of this interaction is shown in Table 4.
Based on the result, by implementing cache on fetch product’s detail endpoint, results in performance
gain about 38-65% depending on the load in average.

Client Count

Request Duration (ms)

Avg Min Max Avg Min Max

Cache No Cache

100 174.83 0.52 1976.53 302.03 0.54 1810.73

200 363.12 0.53 2762.30 581.10 0.63 7013.00

500 596.14 1.12 12169.89 1693.27 1.00 13770.91

Table 4. Fetch Product’s Detail Load Test Result
4. Conclusion

There are many ways to improve performance of a web-based application such as an online
marketplace, including implementing a cache layer. Based on the result shown in the previous section,
the implementation of cache in the application can be considered as a successful attempt.
Implementation of cache do increase the application request performance by 38-65% based on the
scenario, with repetition of fetching the same data (i.e., all products summary, and product’s detail)
gained at least 38% on high load. Besides performance gains, the authors also found out that number
of concurrent users also affect the performance of the application as shown in the results, whereas the
client count increases, the duration it takes to complete the request also increases. For future work,
authors suggest make another approach of cache implementation.

References

[1] H. Salhi, F. Odeh, R. Nasser, and A. Taweel, “Benchmarking and Performance Analysis for
Distributed Cache Systems: A Comparative Case Study,” 2018, pp. 147–163. doi:
10.1007/978-3-319-72401-0_11.

[2] M. I. Zulfa, A. Fadli, and A. W. Wardhana, “Application caching strategy based on in-memory
using Redis server to accelerate relational data access,” Jurnal Teknologi dan Sistem
Komputer, vol. 8, no. 2, pp. 157–163, Apr. 2020, doi: 10.14710/jtsiskom.8.2.2020.157-163.

[3] Microsof t, “Cache-Aside pattern.” https://learn.microsof t.com/en-
us/azure/architecture/patterns/cache-aside (accessed Oct. 01, 2022).

[4] R. K. Singh and H. K. Verma, “Ef fective Parallel Processing Social Media Analytics
Framework,” Journal of King Saud University - Computer and Information Sciences, vol. 34,
no. 6, pp. 2860–2870, Jun. 2022, doi: 10.1016/j.jksuci.2020.04.019.

[5] J. Mertz and I. Nunes, “A Qualitative Study of Application-level Caching,” Oct. 2020, doi:
10.1109/TSE.2016.2633992.

