Penerapan Metode *Nine-Step Kimball* Dalam Pengolahan *Data History* Menggunakan *Data Warehouse* dan *Business Intelligence*

Said Fadlan Ansharia1, Sujacka Retnoa2

^aProdi Teknik Informatika, Fakultas Teknik, Universitas Malikussaleh Kampus Bukit Indah, Jalan Batam, Blang Pulo, Muara Satu, Kota Lhokseumawe, Aceh, Indonesia ¹saidfadlan@unimal.ac.id ²sujacka@unimal.ac.id

Abstrak

Data warehouse dan business intelligence merupakan perpaduan teknologi informasi yang dapat dimanfaatkan oleh banyak perusahaan yang memiliki data histori dan data transaksi yang cukup besar untuk bisa selanjutnya diolah, seperti yang dimiliki oleh beberapa perusahaan waralaba. Penerapan nine-step Kimball dalam data warehouse, dibantu Tableau sebagai media visualisasi hasil business intelligence-nya, perusahaan dapat melihat hasil pengolahan data histori dan data transaksi pada fungsi bisnis penjualan atau transaksi. Beberapa hasil dari penelitian dalam data warehouse yang telah dikerjakan antara lain adalah penyederhanaan basis data, pengelompokan hasil pengolahan data berdasarkan fungsi dan lini bisnis, dashboard laporan dan performa bisnis, serta estimasi kapasitas media penyimpanan yang akan digunakan selama beberapa tahun yang akan datang. Beberapa hasil tersebut, dapat dimanfaatkan oleh lintas tim dan seluruh stakeholder perusahaan untuk bisa melihat gambaran bisnis yang telah dijalankan, serta membantu untuk mendukung keputusan dalam pengembangan bisnis di waktu yang akan datang. Selain daripada itu, hasil pengolahan data dalam data warehouse ini dapat dimanfaatkan oleh perusahaan untuk diolah lebih lanjut, salah satunya menggunakan metode data mining, yang dapat dimanfaatkan untuk kebutuhan prediksi di masa depan.

Kata kunci: data warehouse, business intelligence, nine-step Kimball, Tableau, data mining

Abstract

Data warehouse and business intelligence are combination of information technology that can be utilized by companies that have historical data and transaction data in big amount to be further processed. With the application of nine-step Kimball in data warehouse, also using Tableau as the results visualization media for business intelligence, company can see the analyze of data from their business process, like sales and another transaction. Some of research result in data warehouse that have been done, are simplifying database, grouping of data processing results based on business function and business process, and the estimated capacity of storage media that will be used for the next few years. Some of these results can be utilized by cross-teams and company's stakeholders to see the picture of the business that has been run, then to help the company as a decision support in business development for the future. In addition, the results of data processing in data warehouse can be utilized by company for further processing, one of it for data mining, which can be utilized for future prediction needs.

Key Words: data warehouse, business intelligence, nine-step Kimball, Tableau, data mining

1. Pendahuluan

Perusahaan yang telah beroperasi dalam waktu yang cukup lama, biasanya terdapat jumlah data transaksi yang sangat besar. Khususnya pada suatu perusahaan waralaba, salah satu data yang banyak dihasilkan adalah data transaksi atau data penjualan. Namun, kerap kali, perusahaan

tidak jeli dalam memanfaatkan data tersebut untuk pengembangan bisnisnya. Bahkan, pada beberapa perusahaan yang telah memanfaatkan teknologi basis data terkomputerisasi dalam penyimpanan datanya, masih belum memanfaatkan data-data tersebut untuk diolah kembali untuk mendapatkan *insight* dalam pengembangan bisnisnya, salah satunya untuk mendukung pengambilan keputusan terkait produksi dan penjualan [1].

Data penjualan pada suatu perusahaan, biasanya dibutuhkan oleh beberapa divisi dalam perusahaan tersebut. Hal ini biasanya menjadi kendala tersendiri bagi divisi teknologi informasi (TI) untuk menyajikan data yang telah diolah dalam waktu sesingkat-singkatnya. Ini dikarenakan data transaksi atau penjualan itu hanya disimpan dalam basis data terkomputerisasi tanpa diolah kembali untuk kebutuhan bisnis di masa yang akan datang. Sehingga, data yang dibutuhkan oleh masing-masing divisi atau *top level management* untuk mendukung pengambilan keputusan menjadi terhambat atau lamban.

Rajni Jain dalam penelitiannya yang berjudul *Enhancing Business Intelligence using Data Warehousing: A Multi Case Analysis*, menjelaskan bahwa dalam beberapa tahun terakhir *data warehouse* sangat banyak diterapkan dalam perusahaan dari berbagai jenis industrinya. Beberapa hasil yang ingin dicapai dari penerapan *data warehouse* adalah berupa analisa dan informasi perkembangan terhadap bisnis dan proses bisnis yang dijalankan. Sehingga perusahaan paham betul seperti apa perkembangan binsis yang telah dijalankan berdasarkan data dari masa lampau, serta data terknini yang telah dihasilkan dari proses bisnis yang telah dijalankan [2].

Dengan memanfaatkan perkembangan teknologi informasi yang berkembang saat ini, terdapat 2 (dua) jenis teknologi yang dapat dimanfaatkan oleh sebuah perusahaan untuk pengolahan data history dari transaksi atau penjualan, yaitu data warehouse dan business intelligence. Pemanfaatan data warehouse akan menghasilkan analisis terhadap data melalui proses On-Line Analytical Processing (OLAP). Sedangkan, business intelligence akan berguna dalam penyajian data dan reporting yang dapat divisualisasikan sesuai dengan kebutuhan dari masing-masing stakeholder dalam perusahaan tersebut. Salah satu tool yang akan digunakan dalam visualisasi data adalah Tableau. Selain daripada itu, salah satu hal yang harus diperhatikan dalam pembangunan data warehouse adalah arsitektur yang akan digunakan. Menurut [3], ada 4 layer utama dalam data warehouse, yaitu back-end tier, data warehouse tier, OLAP tier, serta frontend tier.

Pengembangan teknologi *data warehouse* dan *business intelligence* ini bertujuan untuk pengelolaan data yang lebih rapi, pengolahan data untuk kebutuhan bisnis dari masing-masing *stakeholder* atau divisi, serta penyajian *reporting* yang berkaitan dengan proses transaksi atau penjualan (salah satunya dalam bentuk grafik). Sehingga, masing-masing *stakeholder* atau divisi perusahaan dapat melihat dan menganalisa data transaksi atau penjualan yang lebih akurat guna mendukung pengambilan keputusan dan pengembangan bisnis di waktu yang akan datang, khususnya pada proses transaksi atau penjualan, dan proses lainnya yang terdapat dalam perusahaan waralaba tersebut.

2. Landasan Teori

2.1. Data Warehouse

Data warehouse merupakan sebuah teknologi pengembangan dari sistem manajemen basis data tradisional berbasis komputer. Dengan memanfaatkan data warehouse, sistem mampu mengekstrak, merapikan, membersihkan, serta menyesuaikan diri dan mengirimkan kembali data kepada media penyimpanan dimensional, yang kemudian akan dimanfaatkan untuk mendukung kueri basis data, serta dianalisis untuk tujuan, salah satunya adalah pengambilan keputusan [4].

Pada [5], dijelaskan bahwa ETL adalah salah satu metode persiapan data yang baik, karena bertanggungjawab dalam keberhasilan mengekstrak data dan informasi dari beberapa sumber dan area yang berbeda, serta menghasilkan data yang bersih dan siap pakai dalam proses data warehouse.

2.2. Business Intelligence

Business intelligence merupakan perkembangan teknologi informasi yang akan dimanfaatkan kepada data warehouse dalam proses ekstraksi data, yang selanjutnya akan dikelompokkan berdasarkan kategori tertentu, yang selanjutnya dengan menggunakan data warehouse data tersebut akan diproses untuk dianalisa menggunakan metode statistic, atau teknik data mining, yang bertujuan akhir untuk mendapatkan pola (pattern) dari data tersebut [4].

2.3. Metode Nine-Step Kimball

Nine-step Kimball merupakan salah satu metode yang sering digunakan dalam mengembangkan teknologi data warehouse dan business intelligence yang dikemukakan oleh Ralph Kimball. Terdapat beberapa versi metode Kimball yang dibedakan berdasarkan jumlah langkah yang akan digunakan dalam pengembangan data warehouse-nya. Beberapa keunggulan dari metode Kimball dalam pemodelan data adalah cepat dalam proses awal, yaitu set-up dan build. Keunggulan lainnya adalah metode Kimball dapat dikembangkan dengan mengeluarkan biaya yang rendah dalam proses pembangunannya. Dimana, hal ini lah yang menjadi pertimbangan utama bagi perusahaan dalam pembangunan data warehouse dan business intelligence.

Di dalam metode *nine-step Kimball* sendiri sudah menggunakan skema pemodelan datanya, yaitu menggunakan skema bintang (*Star Schema*). Terdapat 9 langkah utama yang dilakukan dalam metode ini, yaitu

1. Menentukan proses bisnis (choosing the process)

Tahap pertama ini, diperulkan penentuan lini/kegiatan bisnis mana yang akan dijadikan subjek utama dalam pengembangan *data warehouse*-nya. Dalam penelitian ini, lini/kegiatan bisnis yang dipilih adalah proses transaksi atau penjualan.

2. Menentukan granularity (choosing the grain)

Tahap ini, akan dipilih entitas apa saja yang akan direpresentasikan dalam tabel fakta (fact table), lalu ditentukan grain pada tabel dimensi (dimension table) yang berhubungan dengan tabel fakta tersebut.

3. Identifikasi dan penyesuaian dimensi (*identifying and confirming the dimensions*)
Pada tahap ini, akan dilakukan pengidetifikasian, serta menghubungkan tabel-tabel yang berhubungan dengan tabel fakta.

4. Menentukan fakta (choosing the fact)

Dari beberapa tabel fakta yang telah disusun, akan ditentukan data dari tabel fakta mana saja yang akan digunakan dengan menentukan *measurement* dan informasi yang akan dibutuhkan dalam *data warehouse*.

5. Menyimpan hasil perhitungan sementara pada tabel fakta (storing pre-calculations in fact table)

Kalkulasi pada atribut-taribut pada tabel perlu diperhitungkan, yang selanjutnya hasil kalkulasi tersebut akan disimpan ke dalam basis data untuk mengurangi risiko kesalahan pada program saat setiap kali kalkulasi dilakukan pada atribut-atribut itu sendiri.

6. Melengkapi tabel-tabel dimensi (Rounding-out the dimension tables)

Pada tiap tabel dimensi, dibutuhkan pembubuhan deskripsi informasi terstruktur tentang atribut-atribut apa saja yang terdapat dalam tabel dimensi tersebut. Tujuannya adalah agar mudah dipahami oleh *user* lainnya.

7. Menentukan durasi dimensi (choosing the duration of the dimension)

Sumber data yang akan dimanfaatkan dalam *data warehouse* biasanya berasal dari masa lampau yang telah sangat banyak. Maka, perlu ditentukan berapa banyak periode waktu yang akan diambil datanya, yang kemudian akan diolah dalam *data warehouse* dan dijadikan tabel fakta.

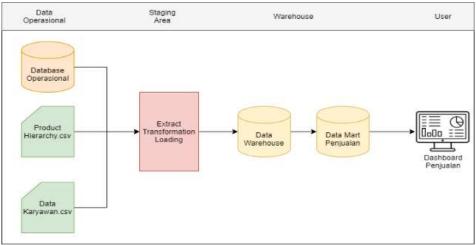
8. Menelusuri dimensi yang termasuk lambat dalam berubah (*Tracking slowly changing dimension*)

Penelusuran terhadap tabel dimensi ini bertujuan untuk menjada konsistensi data (dikarenakan data yang banyak), serta memeriksa adanya perubahan nulai data pada atribut.

9. Memutuskan kueri prioritas (Deciding the priority gueries and the modes)

Tahap ini akan membentuk perancangan fisik dan penentuan masalah yang akan terjadi pada perancangan fisik *data warehouse* dan *business intelligence*.

3. Metode Penelitian


Dalam penelitian ini terdapat beberapa proses atau tahapan yang dilakukan sebagai skenario pembangunan sistem *data warehouse*. Adapun data yang digunakan dalam penelitian ini adalah data penjualan dan produksi dari suatu perusahaan waralaba dari tahun 2012 hingga tahun 2020. Berikut merupakan beberapa proses yang terdapat dalam penelitian ini

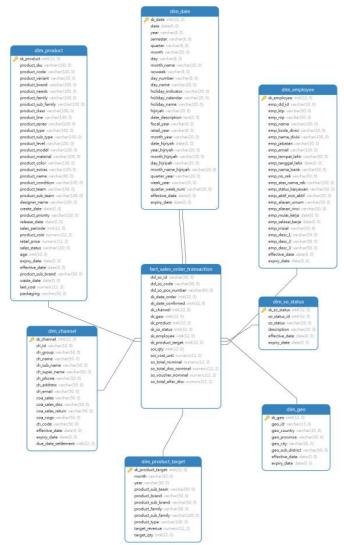
- 1. Pengumpulan Data
- 2. Pre-processing data
- 3. Pembuatan skema data warehouse
- 4. Penerapan proses ETL terhadap data
- 5. Pembangunan business intelligence dashboard

Sedangkan beberapa variabel yang digunakan dalam penelitian ini antara lain, data produk, waktu transaksi, data pegawai, *channel* penjualan, SO status, lokasi pembeli, serta data fakta transaksi penjualan.

3.1. Arsitektur Data Warehouse

Pada penelitian ini, peneliti mengusulkan stagging area dan data mart architecture sebagai arsitektur yang akan digunakan dalam pengembangannya. Dengan beberapa layer yang terdapat dalam arsitetur tersebut, antara lain back-end tier, data warehouse tier, OLAP tier, serta front-end tier [3].

Gambar 1. Staging Area dan Data Mart Architecutre


Gambar arsitektur di atas menjelaskan bagaimana proses pengolahan data yang diterapkan dalam sistem data warehouse yang dibangun. Dimana dengan penerapan tahapan stagging, seluruh data yang memiliki bentuk dan ekstensi data yang berbeda akan di-load sekaligus ke dalam skema basis data yang telah dibuat sebelumnya, yaitu menggunakan skema bintang. Hal ini memiliki keuntungan bagi perusahaan yang memiliki sebaran data yang tersimpan pada beberapa media penyimpanan yang berbeda dan memiliki ekstensi berkas yang berbeda pula. Sehingga data akan bisa langsung diolah pada tahapan ETL, yang selanjutnya akan diolah lebih lanjut dalam tahapan data warehouse menggunakan metode nine-step Kimball. Hasil dari data

warehouse tersebut lah yang nantikan akan divisualisasikan dalam bentuk business intelligence ke dalam dashboard menggunakan tool tambahan, yaitu Tableau Online.

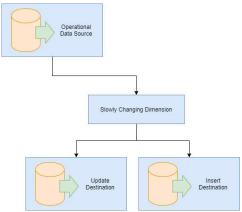
4. Hasil dan Diskusi

Berikut beberapa hasil dari perancangan molde skema *data warehouse* dan *business intelligence* yang telah diterapkan menggunakan data transaksi atau penjualan berdasarkan metode *ninestep Kimball*.

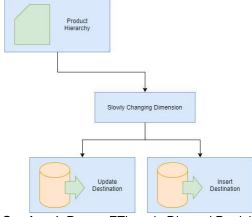
4.1. Penerapan skema bintang (star schema)

Gambar 2. Skema Bintang pada data transaksi atau penjualan

Gambar diatar merupakan skema basis data yang disusun untuk kebutuhan dalam sistem *data* warehouse dengan menerapkan skema bintang dalam pembuatannya. Skema basis data tersebut merupakan hasil dari *pre-processing* terhadap data yang berasal dari berbagai sumber dan ekstensi berkas yang berbeda, sehingga dibutuhkan untuk dibuatkan skema yang dapat menampung seluruh data yang dibutuhkan dalam pembangunan sistem *data warehouse* ini.


4.2. Implementasi Extract, Transform, Load (ETL)

ETL merupakan proses migrasi data yang berasal dari basis data opersional menuju *data warehouse*. Proses ETL ini harus ditentukan periode pengambilan dan pengunggahan datanya. Dalam penelitian ini, proses ETL dilakukan sebanyak satu jam sekali. Berikut merupakan table penjelasan proses ETL yang dilakukan.


Tabel 1. Proses ETL

Programmer of ETL	Proses	Keterangan
Melakukan <i>cron job</i>	Hourly	Mengunggah dan mentransformasikan data operasional menuju <i>data</i> warehouse

Berikut merupakan proses ETL dimensi terhadap beberapa table yang terdapat dalam kegiatan transaksi atau penjualan.

Gambar 3. Proses ETL Dimensi

Gambar 4. Proses ETL pada Dimensi Produk

4.3. Reporting

Dari hasil proses ektraksi dan unggah data ke dalam *data warehouse* dalam bentuk tabel dimensi dan tabel fakta, data-data tersebut ditampilkan dalam bentuk *report* dengan memanfaatkan *tool* lainnya, yaitu Tableau.

Day of Date.	week	Dd Sa Pas Number	Product Sku	Product Code	Product Name	Product Var	Items Sold	Demand	Product Cost	Retail Price	Net Sales
2021-05-01	17.	F52.2105013439	XCM218X0894NF.XL	XCM21BK0894NF	Calmy Black	X.	1	0.14	37,000	150,000	75,000
2021-05-01	17	F.02.2105013439)FA19BK0239W5.42	XFA198X0239WS	Meery Black White	42	1	0.14	114,670	345,000	200,031
2071-05-01.	17	F 02:2105013440	AFA20V/E0001WS.40	AFAZONEDODINS	Lombard All White	4)	1	0.14	114,000	450,000	225,000
2021-05-01	17	F.02.2105013440	XCM19WE03784F.XL	XCM19WE0378NF	Math White	XL	1	0.14	47,000	150,000	64,530
2021-05-01	17	F.02.2105013440	M_M3/0100300/M2M	XDM208X0616NF	Pode Black	M	1	0.14	47,000	155,000	70,983
2021-05-01	17	F.02.2105013440	XCM21WE0889NF.XL	XCMSIME0889NE	Tuneful White	XI,	- 1	0.14	37,000	150,000	64,530
2021-05-01	17	F02.2105013441	ACM218x0039NF M	ACM218X0039NF	Deliv Black	M	1	0.14	42,700	150,000	66,675
2021-05-01	17	F.02.2105013441	XCMZ1BXD8ZGNF,M	XCM218x0826NF	Ballot Black	М	1	0.14	39,100	150,000	66,675
2021-05-01	17	FSZ.2105013441	XCM21WE0844NF.M	XCM21WES54494	Eskaton White	M	1	0.14	37,000	150,000	66,675
2021-05-01	17	F.02.2105013442	AFB20EK000185.40	AF8209K0001BS	Limit Basic	4)	1	0.14	47,725	150,000	105,000
2021-05-01	17.	F0Z210501344Z	XF828WY012SWF.42	XFB20NV0125NF	Freddo Navy Red	42	1	0.14	55,430	170,000	140,012
2021-05-01	17	F.02.2105013443	AFA20NY0227WS.40	AFA20NY0227WS	ATH4 Navy Red W.	40	1	0.14	101,300	375,000	200,025
2021-05-01	17	F0ZZ105013443	XAI20EX0075NF.F	XA120EK0075NF	Smoldering Black	F	1	0.14	39,838	155,000	90,009
2021-05-01	17	F 02 Z105013444	XF4199MQ289G5.38	XFA198KUZ88GS	Ethan Black Gum	36	1	0.14	108,700	345,000	200,031
2021-05-01	17	F07.2105013445	XFA19NY0274W5.40	XFA19NV0Z74WS	Timeless Hi Navy	40	1	0.14	119,000	399,000	199,500
2021-05-01	17	F02.2105013445	XFA21GF0291W5 36	XFA21CF0291W9	Timeless Hi Green .	36	1	0.14	112,103	399,000	199,500
2021-05-01	17	F022105013446	AAHZIBKIZEENE F	AAH209X0365NF	Vanlig Low Stade	F	1	0.14	10,000	35,000	25,001
2021-05-01	17	F.02.2105013446	AFA20EK0221WS.40	AFA208K0221WS	AT-693 Black White	40	1	0.14	106,118	375,000	188,025
2021-05-01	17.	F 02:2105013447	XCM196K0332NF.M	XEM19BKD332WF	Coleido Black	M	-1	0.14	47,000	150,000	75,000
2021-05-01	17	F 02 2105013447	XCM21WE0839NF.M	XCMZIWE0839NF	Joy White	M	1	0.14	37,000	150,000	75,000
2071-05-01	17.	F 02.2105013448	XF820NM0115NF.39	XFBZQMMQ115NF	Zekka Navy Margon	39	1	0.14	62,589	170,000	120,003
2021-05-01	17	F02.2105013448	XFB204Y0125NF.42	XFB20NY0125NF	Freddo Navy Red	42	1	0.14	55,430	170,000	140,012
2021-05-01	17	F 02 Z105013449	XCM208X0562NF.XL	XCM20BX0562NF	Hardway Black	32	1	0.14	37,500	150,000	80,010
2021-05-01	17	F 02 2105013449	XFA19NY0290N5.43	XFA19NY0290WS	Ethan Navy White	43	1	0.14	108,776	345,000	200,031
2021-05-01	17	F.02.2105013450	XFB208K0124NF.41	XF8208K0124NF	Freddo Black	41	1	0.14	57,870	170,000	140,012
2021-05-01	17	F.02.2105013451	XFA20MN027455.42	XFAZOMINO2746S	Omega Mardon Gu.	42	1	0.14	108,500	345,000	150,006
2021-05-01	17	F 02:2105013452	XF419NY0205WS.43	XFA19NY0205WS	Timeless Low Navy	43	1	0.14	108,171	345,000	200,031
2021-05-01	17	F.02.2105013453	AAF21BK0002NF.F	AAF218KCOC2NF	Zion Black	F	1	0.14	45,700	150,000	75,000
2021-05-01	17	F 02.2105013453	16A188X006285.42	XFA188K00628S	Authentic All Black	12	1	0.14	101,479	345,000	150,006
2021-05-01	17	F.02.2105013454	XAC20BX030SNFJF	XACZOEKOBOSNE	Alfred Black	Į.	1	0.14	48,466	175,000	88,008
2021-05-01	17	F 02 2105013455	ACJ218X0053NF1	AC1218x0063%F	Barthley Black	L	1	0.14	110,000	375,000	187,500
2021-05-01	17	F.02.2105013455	AFB20EK0001BS-43	AFB208x0001BS	Limit Basic	43	1	0.14	46,989	150,000	105,000

Gambar 5. Laporan Histori Penjualan pada Tableau

4.4. Pembuatan Dashboard

Dengan memanfaatkan *tool* visualisasi data, yaitu Tableau, dibentuk *dashboard* yang bertujuan untuk menampilkan data dan informasi yang berasal dari hasil analisis pengolahan data yang telah dilakukan.

Gambar 6. Performa Produk

Performa produk merupakan halaman untuk menampilkan tingkat performa produk yang dijualkan, atau atribut dimensi lainnya yang memiliki penjualan tertinggi. Pada halaman ini pula akan ditampilkan data evolusi dari *net sales*, COGS%, dan *sales margin*, beserta perbandingan pada datanya. Sebaran data dapat dilihat berdasarkan beberapa *filter* tertentu, seperti tingkat *net sales* terkecil atau terendah dengan *sales margin*.

Gambar 7. Performa Terbaik

Pada halaman di atas, digunakan untuk melihat kecenderungan penjualan produk berdasarkan kurun waktu tertentu (misal, 12 bulan, 12 minggu, atau 12 hari). Pada halaman ini pula, pengguna dapat mengganti dimensi untuk menampilkan data dengan beberapa atribut lainnya, seperti produk, desainer produk, maupun *merchandiser* dari produk tertentu, serta dapat diurutkan berdasarkan total produk yang terjual, *net saled*, marjin penjualan, maupun *COGS*%.


Gambar 8. Laporan berdasarkan kurun waktu (kiri) dan berdasarkan dimensi tertentu lainnya (kanan)

Halaman lainnya yang dapat diakses oleh pengguna dalam melihat laporan atau sebaran data penjualan atau transaksi yang telah dihasilkan adalah berdasarkan waktu, yaitu harian atau bulanan (gambar kiri). Serta, pengguna juga dapat memodifikasi tampilan laporan lainnya dengan memanfaatkan grafik pada *Tableau* dengan menambahkan atau menjadikan dimensi dan atribut lainnya sebagai data yang ingin ditampilkan.

Gambar 9. Analysis Ad-hoc

Tampilan halaman di atas merupakan tampilan dari Analisa terhadap tren penjualan, serta gambaran frekuensi dari dimensi berdasarkan matriks tertentu terhadap data penjualan yang telah dihasilkan.

Gambar 10. Persentase permintaan produk

Pada halaman di atas, data penjualan produk tertentu dan berdasarkan tanggal yang telah ditentukan, dapat dilihat jumlah terhadap permintaan produk per minggu atau per bulan. Halaman ini pula dapat dijadikan acuan sebagai data laporan dari penjualan atau transaksi yang telah dihasilkan.

4.5. Estimasi Kapasitas Penyimpanan

Kapasitas penyimpanan data pada proses pengolahan data adalah salah satu hal yang perlu dipertimbangkan sebelum menyelesaikan pembangunan data warehouse dan business intelligence. Setiap transaksi data yang terdapat dalam tahap OLTP (On-Line Transactional Process) akan berimbas atau mempengaruhi pertumbuhan data yang terdapat dalam data warehouse secara berkelanjutan. Dengan mengasumsikan jangka waktu penggunaan data warehouse dan business intelligence yang akan digunakan sebuah perusahaan waralaba, berikut merupakan estimasi terhadap kapasitas media penyimpanan data yang dibutuhkan.

Tabel 2. Estimasi Kapasita Media Penyimpanan (dalam 2 tahun ke depan)

Nama Tabel	Besaran rekaman data (<i>bytes</i>)	Jumlah rekaman data terkini	Jumlah rekaman dalam 2 tahun mendatang	Jumlah (<i>Kbyt</i> es)
fact_sales_order_transactional	634,375	385,909	3,859,090	2.374.824
dim_channel	740	-	33	24,576
dim_geo	250.125	-	21,902	5,606,912
dim_product	2,768.875	28,342	147,662	403,218,432
dim_so_status	135.625	-	2	8192
dim_employee	1,306.125	316	1,646	1,933,312
dim_product_target	1,297.25	663	3,454	4,046,848
dim_date	543.5	-	3,287	1,802,240
			Total	416,640,512

5. Kesimpulan

Berdasarkan tahapan penelitian yang telah dilakukan pada penelitian ini, didapatkan beberapa hasil penelitian yang dapat disimpulkan sebagai berikut, antara lain

- Penerapan arsitektur data warehouse yang telah dipaparkan di atas, dalam proses data stagging telah mampu menempatkan data yang berasal dari media penyimpanan dan ekstensi berkas yang berbeda ke dalam sebuah basis data yang terpusat dengan skema basis data yang disusun berdasarkan kebutuhan dalam data warehouse.
- Data yang telah berhasil diolah dalam proses ETL, dalam data warehouse dengan menerapkan metode nine-step Kimball dapat membuahkan hasil pengolahan data yang dapat dimanfaatkan oleh perusahaan, seperti data hasil penjualan terhadap hasil produksi pada tiap produk yang disusun dalam kurun waktu tertentu.
- Hasil dari data warehouse dapat divisualisasikan dalam bentuk business intelligence yang dibagi dalam beberapa dashboard visualisasi dengan tool tambahan, yaitu Tableau. Sehingga, stakeholder dapat membaca hasil dari proses bisnis yang telah dijalankan selama ini.
- Selain itu, penerapan data warehouse ini pula dapat memberikan rekomendasi kepada perusahaan, baik dari sesgi bisnis, maupun dari segi pemanfaatan teknologi informasi, salah satunya adalah informasi tentang estimasi penggunaan media penyimpanan dalam beberapa tahun yang akan datang.

Adapun pekerjaan terkait pengembangan yang dapat dilakukan di waktu yang akan datang, antara lain adalah

- Pemanfaatan metode lainnya dalam pengembangan *data warehouse* dan pemanfaatan *tools* lainnya yang dalam visualisasi data dan pembuatan *business intelligence*.
- Pemanfaatan pemodelan data lainnya selain data warehouse, seperti data pipeline atau data lake.
- Pengembangan proses lanjutan dari hasil pengolahan dalam data warehouse, seperti data mining untuk bisa digunakan dan mendapatkan hasil pengolahan data lainnya, seperti prediksi.

References

- [1] D. Sugiarto, H. L. H. S. Warnars e Winarno, "PERANCANGAN DATA WAREHOUSE PENJUALAN (STUDI KASUS PT. SUBAFOOD PANGAN JAYA)," em *Seminar Nasional Riset dan Teknologi (SEMNAS RISTEK)* 2020, Jakarta, 2020.
- [2] S. Sharma e R. Jain, "Enhancing Business Intelligence using Data Warehousing: A Multi Case Analysis," *International Journal of Advance Research in Computer Science and Management Studies*, vol. 1, p. 160, 2013.
- [3] A. Vaisman e E. Zimanyi, Data Warehouse Systems : Design and Implementation, Springer, 2014.
- [4] M. Ross e R. Kimball, The Data Warehouse Toolkit: The Definitive Guide to Dimensional Modeling, Wiley, 2013.
- [5] K. Srinivasa, S. G M e S. Hiriyannaiah, Introduction to Data Visualisasion, 2018.
- [6] P. De P. P, "Business Intelligence," vol. 5, no No. 5, pp. 76-85, 2020.
- [7] A. Priyanto e P. Destarini, "PERANCANGAN DATA WAREHOUSE PADA RSUD DR.R GOETENG TAROENADIBRATA PURBALINGGA DENGAN MENGGUNAKAN NINE-STEP METHODOLOGY," em *Hasil Penelitian dan Pengabdian Pada Masyarakat IV Tahun 2019*, Purwokerto, 2019.
- [8] K. Munawar e H. L. H. S. Warnars, "Model data warehouse untuk Operasional petugas pemadam kebakaran Pada dinas pemadam kebakaran provinsi DKI Jakarta," *Jurnal Ilmu Komputer*, vol. 12, nº 1, 2019.

[9] S. F. Asnhari, P. H. Gunawan e Y. Rusmawati, "Predicting staple food materials price using multivariables factors (regression and Fourier models with ARIMA)," em 2019 7th International Conference on Information and Communication Technology (ICoICT), Kuala Lumpur, 2019.

- [10] P. Mikalef, I. Pappas, J. Krogstie e P. Pavlou, "Big data and business analytics: A research agenda for realizing business value," *Information and Management*, 2019.
- [11] M. D. P. Pramita, M. Sudarma e I. B. A. Swamardika, "Analysis of Sales Pattern Determination System and Drug Stock Recommendation," *Jurnal Ilmu Komputer*, vol. 12, nº 2, 2019.
- [12] K. Sivaganesh, P. Srinivasu e S. Satapathy, "Optimization of ETL Work Flow in Data Warehouse," *International Journal on Computer Science and Engineering (IJCSE)*, 2012.
- [13] M. D. P. Pramita, M. Sudarma e I. B. A. Swamardika, "Analysis of Sales Pattern Determination System and Drug Stock Recommendation," *JIK : Jurnal Ilmu Komputer,* vol. 12, no 2, 2019.