
Journal of Electrical, Electronics and Informatics, p-ISSN: 2549–8304 e-ISSN: 2622–0393 44

Abstract The revolution in the automotive industry over time led to more and more electronics to be included in the vehicle and

this increased the number and space allocated for cables. Therefore, the in-vehicle cabling network has been replaced with a two-

wire bus serial communications protocol called Controller Area Network (CAN). The proposed paper described the

implementation of the CAN controller as a listener to monitor the state of the CAN bus in a real-time approach. The CAN listener

obtains the data from the CAN bus by using an external signals converter. The work was realized using development platform

called ZedBoard. The controller performed a sequence of processes on the received CAN frames including decoding, buffering

and filtering. The processed data was stored in an implemented FIFO to keep the data from loss. After that, the data was sent

serially to the processor system over the implemented SPI that connects the controller with the processor of the Zynq-7000

device. A single-threaded, simple operating system was run over the processor to provide a set of libraries and drivers that were

utilized to access specific processor functions. It enabled the execution of the C code that was written to configure the operation

of the onboard display unit. The design procedure and simulation process for the implemented CAN listener was achieved using

the Xilinx ISE WebPACK environment, while the final complete design was properly tested and verified by connecting the

module to a CAN network consisting of six CAN nodes.

Index Terms—CAN, SoC, ZedBoard, FIFO, ISE WebPACK.

I. INTRODUCTION

The Controller Area Network is an asynchronous bus

network that defines a standard protocol for effective and

reliable serial communication between devices, sensors, and

actuators for real-time control applications[1]. The CAN

network uses the bus topology, in which every node in the

network is connected to other nodes without using a central

controller for the entire network. The CAN controller specifies

the bus level by the potential difference between two wires

that comprise the CAN bus. The CAN protocol introduces two

logical states: dominant and recessive levels which are

identified as a logic ‘0’ and logic ‘1’ respectively. The

transmitting node can broadcast a message to all the receiver

nodes by changing this bus level [2, 3].

The CAN bus has a maximum data rate of up to 1 Mbit/s for

a maximum distance of 40 meters. CAN protocol use

broadcast communication technique (Multi-master bus) in

which every node can send messages to all other nodes on the

bus and each node selects the interesting messages using

filters and responds only to wanted messages. The CAN bus

provides a very high level of security, sophisticated error

detection and correction techniques with assumptions of no

data can be lost [4, 5].

The interest in CAN protocol has increased recently due to

the large number of applications that use it and also the

availability of the robust mix of on-board peripherals and

expansion capabilities of ZedBoard, all these give an incentive

to implement this important protocol on this integrated

platform.

The objective of this work is to implement a CAN listener

on ZedBoard using an operating system running on the Zynq

processor[6]. The Register Transfer Level (RTL) model of the

CAN controller was developed using a general-purpose

parallel programming language called VHSIC Hardware

Description Language (VHDL) and the functional simulation

of the model was obtained. The complete design for the

controller was divided into twelve sub-modules where each

one performs a special function. These sub-modules were

integrated to work as a single unit to implement the CAN

listener module. To configure the functions of the Zynq

processor under the stand alone operating system, a C code is

also written in an Object-Oriented manner. The final design of

the CAN listener module was tested by connecting the module

to an actual CAN network.

The vital problem being addressed was the design and

improvement of a one-chip solution for a CAN controller as a

listener using the ZedBoard platform. As a listener, the CAN

controller should not send any frame to the CAN network. The

CAN listener acquires the data from the CAN bus by

connecting the transceiver adapter directly to the board. The

transceiver converts the differential signals from the network to

digital signals. When data is received, it is necessary to decode

the different data input streams and to realize specific protocol

mechanisms like message buffering and filtering. After that,

the processed data should be sent to the processor using one of

the serial communication standards like Serial Peripheral

Interface (SPI). Finally, the data streams should be displayed

using the onboard display unit called OLED which is

connected to the processor.

An introduction to the CAN listener is given in Section I.

Section II presents the related work. Sections III, IV and V

show the building blocks of the developed CAN controller.

The results, performance analysis, and the actual test explained

in sections VI. Finally, section VII concludes this paper.

II. LITERATURE REVIEWS

A lot of attempts for monitoring the CAN bus have been

made; for instance, the works in [7],[8] and [9] described the

design, simulation and FPGA implementation of a protocol

controller for the CAN 2.0. It also deals with the design

process of the FPGA, coding, simulating, testing, and finally

Operating System Realization for Real-Time

Visualization of CAN-Bus Data Streams using

Xilinx ZyncSoC
Mohammad J.M Zedan

Computer and Information Department

College of Electronics Engineering/ Ninevah University

Mosul, Iraq

mohammad.jassim@uoninevah.edu.iq

Journal of Electrical, Electronics and Informatics, Vol. 4 No. 2, August 2020 45

programming the FPGA. The RTL based design of the CAN

controller was implemented using Verilog HDL.

A LabVIEW in [10] was used to compile a CAN bus

monitor system. It abstracted the signals data from data frames

transited in the CAN bus. A computer, plug-in hardware, and

Lab VIEW comprised a completely configurable virtual

instrument to accomplish tasks. A National Instruments™

CAN-board (NI-CAN) was used to interface a CAN bus in this

system.

The authors in [11] employed a 32-bit ARM Cortex-M

series microcontroller with its on-chip CAN and USB

peripherals were used to implement a USB-CAN adapter and

custom firmware that could be ported on a variety of boards

provided with these two communication interfaces. The host

PC runs a GUI developed using standard DLL libraries

provided by the host Windows operating system to

demonstrate the CAN-USB gateway.

Gong, S., et al[12], proposed the use of the reusable

IP(Intellectual Property) technology in FPGA as the core

controller. Also, the CAN communication system was

implemented by System-on-a-Programmable-Chip (SOPC)

technology. The MicroBlaze soft-core was used as an

embedded processor in FPGA. The AXI Quad SPI core was

used to implement the SPI control logic and the AXI INTC

core to implement the interrupt control. MCP2515 and

PCA82C250 were used to realize message transmission and

reception in hardware design.

In [13] a Real-time Data-logger was designed for

diagnostics display. Data acquisition from the bus was

achieved using Arduino Uno R3 and MCP2515 CAN Bus

Shield. Vector CANoe 9.0 was used for designing and

simulating the CAN network. The data acquisition system is

tested on this simulated network thus, acquired data is

displayed on MATLAB GUI which can be used for fault

detection and analysis.

Haoet al.[14]proposed to analyze the controller area network

protocol in a way in which the Layered modeling method was

adopted to build the CAN network model in the OPNET

Modeler simulation environment. The models of Logical Link

Control and Medium

Access Control of CAN protocol with the functions of error

handling and channel status detection was established in the

OPNET node Layer and the model of CAN bus physical layer

was designed to implement collision detection and non-

destructive arbitration functionality in the OPNET Pipeline

Stages.

Presi T. [15] proposed the implementation of the CAN protocol

using a PIC microcontroller for a vehicle monitoring system.

Two PIC microcontrollers were used; both having the CAN

protocol as a built-in device. The main feature of the system

included monitoring of various vehicle parameters such as

Temperature, presence of CO2 level in the exhaust and Battery

Voltage. The software part was implemented in MPLab IDE

using Embedded C, while the schematic was prepared using

OrCAD.

It can be concluded from the previous studies that using

microcontrollers integrated with CAN interface can degrade

the performance, as the microcontroller is responsible for data

communication (sending and receiving), in addition to reading

inputs and driving outputs. This is a critical issue in industrial

networks, where latency is a concern. In the case of using an

individual CAN controller, there is a cost penalty as further IC

is required, which increases the total cost for the implemented

system. Finally, using the IP cores developed by FPGA

manufacturers and independent designers are usually not free

of charge. All these factors evidence the need for developing a

CAN controller module for smart sensors networking.

In this paper, the proposed work described the

implementation of CAN controller as a listener to monitor and

displayed the state of the CAN bus in a real-time approach for

different standard bit rates. The controller was realized on the

programmable logic of the ZedBoardplatform (SoC

technology) using VHDL over the Xilinx ISE WebPACK

environment.

III. CAN LISTENER IMPLEMENTATION

The CAN listener controller had been realized on the

programmable logic of ZedBoard using the VHDL language.

The design code was divided into a sequence of processes that

were used for sequential statements to give a more powerful

description of the design. These processes work concurrently to

perform the listening procedure. Fig. 1, shows the flowchart of

operations (processes) that performed on the received CAN

frames.

Fig. 1. CAN Listener Processes

The following is a brief description of all the processes that

composes the CAN listener controller:

A. Baud Rate Prescaler(BRP)

All nodes on the CAN bus must use the same bit rate. As a

result, the bit rate has to be calibrated for the different onboard

oscillator clock frequency of the individual nodes in the CAN

network[16].

ZedBoard supplied the Programmable Logic with four

general-purpose clock outputs. A 32 MHz was used as a

programmable clock source called (Crystal). This sub-module

was used to create and adjust the CAN listener system clock

(CLK) by dividing the on-board clock source (Crystal).

The CAN network could work with different standard bit

rate as shown in the Table I. The bit rate of the CAN bus could

be calculated using (1)[17]:

Journal of Electrical, Electronics and Informatics, p-ISSN: 2549–8304 e-ISSN: 2622–0393 46

Where N is an integer number that expresses the number of

the fixed units called Time Quanta (TQ) that used to represent

the bit time, where each TQ equals twice the oscillator period.

A register called Baud-Rate Prescaler (BRP) was used to

assign values to the divisor. The BRP could be configured

indirectly when the value of BRP is sent from the processor to

the controller via the SPI.
TABLE I

BIT RATE RECOMMENDATION

Bit Rate

(Kbps)

NBT

(µsec.)

No. of

TQ/bit

TQ

Freq.(MHz)

BRP Divisor

1000 1 16 16 “111” 1

500 2 16 8 “110” 2

250 4 16 4 “101” 4

125 8 16 2 “100” 8

100 10 16 1.6 “011” 10

50 20 16 0.8 “010” 20

40 25 16 0.64 “001” 25

20 50 16 0.32 “000” 50

B. Sampling and Synchronization Process

The CAN protocol utilized a Non-Return to Zero (NRZ)

coding technique, which did not encode the clock inside the

data stream; therefore, the CAN protocol used a complicated

method of bit synchronization to compensate the phase shifts

between the oscillator frequencies for all the nodes on the bus.

With this method, every node in the CAN network was

incessantly resynchronized to make sure that all the nodes are

synchronized at the same transmission rate (same nominal bit

rate). The nominal bit rate was the number of bits per second

transmitted without any resynchronization [17].

The nominal bit time (NBT) was the time required to transmit

a single bit on the network and can be calculated using the

inverse of the nominal bit rate.

The CAN bit time was comprised of four non-overlapping

time segments. The Synchronization Segment (Sync_Seg) was

the first segment in the nominal bit time and was utilized to

synchronize nodes on the CAN bus. This segment had a fixed

length (1) TQ. The transition of the bit was expected to occur

within this segment. The second segment was the Propagation

Time Segment (Prop-Seg), which was utilized for

compensating the propagation delays of the signal across the

CAN network. The length of this segment was between (1- 8)

TQ[18].

Following the Prop-Seg,Phase Segment 1 (Phase_Seg l)

was used for compensating the edge phase errors. The segment

might lengthen during the resynchronization process. The final

segment called Phase Segment 2 (Phase_Seg 2) was utilized

also for compensating the edge phase errors. The segment

might shorten during the resynchronization process. The length

for each of the last two segments was between (1- 8) TQ [17].

The sample point was the point in the bit time located

always at the end of Phase_Seg1 and it was used to read and to

interpret the value of the current bit.

The sampling and synchronization processes were

performed through reading the (RX_Trans) signal from the

transceiver, which converted the on-bus differential signals to

digital signals.

After that, every three consecutive values were stored in the

temporary register called (RX_Reg). In case of the value of

RX_Reg was equal to “110” or “001”, it means the transition

from logic ‘1’ (recessive) to logic ‘0’ (dominant) or from logic

‘0’ to logic ‘1’ has happened[19].

Every bit in the CAN listener module was represented by

16-time quanta. Thus, the sampling point should take place in a

bit time number 13. A ring shift register of 16 bits called (TQ)

was used to describe the time quanta module.

Only a single bit of TQ register was set to ‘1’ and this bit

was shifted every time by one. Once the transition occurs, the

bit was shifted obligatory to the bit location number 13

(sampling point). This procedure ensured synchronization for

the whole design, whereas every bit (P) from the TQ register

was used as a condition to coordinate all the processes that

performed on the received CAN bit. When the sampling point

was reached, the first value from the (RX_Reg) register was

loaded to the (RX_CAN) signal which represented the input

port for the CAN listener module.

C. Start of Frame Detection

Start of Frame (SOF) is a single dominant bit that indicates

the beginning of the CAN frames. The main task for this bit is

to synchronize all nodes on the CAN network after idle bus

state.

 In the CAN protocol, every two continuous frames were

separated by Interframe Space which was composed of at least

three recessive bits called the Intermission [17]. Following the

Intermission, the bus remains in the idle state (recessive) until

the beginning of the transmission for the nodes. At this time the

detection of the dominant bit (SOF) on the bus was expected.

The detection process was performed by counting the

number of recessive bits of bus idle state before the SOF bit. A

counter called (Freecount) is utilized for this process. When the

Freecount is greater than the intermission value, the first

dominant bit that is received could be considered as the start

for the new frame.

D. Bit De-stuff Process

Bit stuffing is the process of inserting non-information bits

into the data stream in the transmitter’s side to improve

synchronization and to provide signaling information to the

receiver. On the receiver’s side, the de-stuffing process is

performed to neglect the stuffed bit that is added previously.

As the SOF bit of the received message was detected, the

de-stuffing process should be performed to delete the stuff bits

before the extraction of the relevant information from the

received message. To perform that for the CAN listener design,

several states were used as described below:

 State (N) represented the new incoming value received

from the bus.

 State (H1 – H5) represented the high-level (recessive)

values.

 State (L1 – L5) represented the low-level (dominant)

values.

 State (HS, LS) represented the high-level stuff bit and

low-level stuff bit respectively.

 State (HE, LE) represented the high-level stuff error and

low-level stuff error respectively.

In the CAN protocol, the de-stuffing process was only

executed on a specific range called Destuff_Range (from the

SOF bit until the end of the CRC field). Every newly received

value located in the Destuff_Range was loaded sequentially to

the N state and then it compared if its ‘0’ or ‘1’. In case the N

state has ‘0’ for five consecutive states, it went from state L1 to

L5.

Journal of Electrical, Electronics and Informatics, Vol. 4 No. 2, August 2020 47

 After that, if the new bit comes ‘0’, the state went to LE

(low-level stuff error), otherwise, it was going to HS (high-

level stuff bit). Whenever a high-level value ‘1’ comes in

between the five consecutive states, the state went directly to

H1. The special case happened with the HS state (“000001”)

when the state N comes ‘0’, the HS went to L1, otherwise, it

goes to H2.

The same procedure was performed when the N state had

‘1’ for five consecutive states (H1 to H5). After that, if the new

value comes ‘1’, the state went to HE (high-level stuff error),

otherwise, it was going to LS (low-level stuff bit). When a

low-level value ‘0’ comes in between the five consecutive

states, the state goes directly to L1. Also, an exceptional case

happens with the LS state (“111110”), when the state N comes

‘1’, the LS state goes to H1,otherwise, it goes to L2. The

procedure that describes the de-stuffing process is shown in

Fig. 2.

Fig. 2. The De-Stuff Procedure

To determine the validity of the received bit, a signal called

RX_valid was used to specify if the received bit was data or

stuff. This signal becomes ‘0’ only when there was high or low

bit stuff (HS or LS). The other CAN listener processed work

just in case the RX_valid is high. By using this procedure the

stuff bit was omitted and the frame returned to its original

value as before the staffing.

 An error flag signal called Rx stufferr was set to ‘1’ in case

of (LE or HE), to indicate that the received frame was

incorrect. No error frames were sent back to the CAN bus

because this controller works as a listener.

E. Buffering Process

After the SOF bit of the CAN frame has been noticed and

the de-stuffing process has performed on the received bits, the

clean frame should be loaded to a temporary buffer called

(Message_Reg). The buffer was accessed constantly by every

process in the CAN module to read the relevant data. This

buffer must be cleared at the end of each frame and then should

be reloaded with a fresh frame after the next receive.

F. Frame Types

The implemented CAN listener supported the standard data

frames, extended data frames and remote frames (standard and

extended). Neither error nor overload frames would be

generated [20], since the controller worked as a listener. The

type of received frame was determined by checking the IDE bit

and the RTR bit in the Message_Reg buffer. These bits had

different locations, depended on the frame type.

When the IDE bit was ‘0’, it meant that the received frame

was standard data frame; otherwise, the received frame was

extended data frame. The same test was performed on the RTR

bit to find out if the received frame is a remote frame or not.

The remote frame could be standard or extended depending on

the value of the IDE bit.

G. Message Identifiers

Every frame has a message identifier (ID) which is unique

within the entire network. It located directly after the Start of

Frame (SOF) bit. The ID defined the content and also the

priority of the message that was utilized during the bus

arbitration process when several stations compete for the bus

access.

In this process, a special mask was used to extract the

message identifier. Every time the mask was applied to the

Message_Reg buffer to read the value of the message identifier

for each frame. After that, the value of the identifier for the

standard data frame which was 11 bits should be loaded to the

(ID_Reg) register.

Once the extended data frame was received, an extra 18 bits

should be loaded to the (EID_Reg) register which represents

the extended identifier using the masking procedure.

Accordingly, the total length for the identifier field became 29

bits.

H. Data Length Code

Data Length Code (DLC) is a 4-bit field indicates the

number of bytes in the data field of the CAN frames [16]. The

DLC field has different locations in the CAN frames depending

on the value of the Identifier Extension (IDE) bit. Another

mask was also utilized to take out the DLC value from the

Message_Reg.
The acceptable values of the DLC field were zero to eight;

point out, the data field contained data of zero to eight bytes

length. If the value of the DLC field was bigger than eight then

it was assumed that the frame includes eight bytes.

I. Message Data

One more mask was also applied to the Message_Reg

buffer to read the actual CAN data from the data field and then

loaded it to the (RX_Data). The length of the data field could

be (0 - 8) byte depended on the value of the DLC register. The

data field for the remote frame had no data, regardless of the

DLC value.

J. Cyclic Redundancy Checker

Cyclic redundancy checking is a technique for detecting

errors in the frames that have been transferred over a

communication link. The transmitting node applied a fixed

number of bits on a portion of the frame that was to be

transmitted and then attached the resulting cyclic redundancy

code on the CRC field of the frame and sent it.

The receiving node applied the same polynomial on the

received data. If the receiving node noticed a mismatch

between the calculated and the received data, the CRC error

occurred and the message was rejected.

In the CAN listener module, the CRC value for every

received frame was calculated by using a polynomial generator

called CAN Polynomial which was represented in hexadecimal

by 4599h [21]. The CRC procedure was performed on a special

range of frame bits called (CRC_Range) which was started

Journal of Electrical, Electronics and Informatics, p-ISSN: 2549–8304 e-ISSN: 2622–0393 48

from the SOF bit until the end of the data frame or until the end

of the control field for the remote frame.

The bits that located in this range were divided by the

polynomial specified by (2):

[21].(2)

The remainder of this division should be loaded to the

(crcreg) register then it compared with the value of the CRC

field which was part of the CAN frame. In case of mismatch is

detected, the CRC result flag (CRC result) was set to logic ‘0’

(incorrect frame), otherwise, it set to logic ‘1’. This function

was implemented using a 15-bit shift register and the exclusive

or (XOR) to perform the dividing process.

Once the CRC_Range was ‘0’, the CRC process would do

nothing; otherwise, the divisor was within the input (crcin).

The divisor was then shifted by one bit, and the process was

repeated until the divisor reaches the end of the input row.

K. Message Acceptance Filters and Masks

The main function of this module is to validate the

incoming frames by checking the messages identifier (ID) to

determine if the received frames are relevant to that particular

node or not.

The acceptance filter was based on a special mask that was

used to determine which bits in the identifier were tested with

the filters. Table II described how each bit in the identifier was

compared with the masks and filters to determine whether the

message was accepted or not. If any mask bit was set to a zero,

the corresponding bit would automatically be accepted,

regardless of the filter bit [21].
TABLE II

 FILTER AND MASK OPERATION [21]

Mask Bit Filter Bit Message-ID Bit Result

0 X X Accept

1 0 0 Accept

1 0 1 Reject

1 1 0 Reject

1 1 1 Accept

To control the reception operating modes for the valid

frames, two bits called RXM were used. In case of the RXM

were configured with”11”, it disabled the operation for the

masks and the filters and the listener will receive any message

on the bus.

When the RXM configured with”10”, only the messages

with the extended identifiers would be accepted if they

matched with the filter values. On the contrary, when the RXM

equal to”01”, only the messages with the standard identifiers

would be received when they matched with the filter values.

Normally, the RXM bits were cleared to”00” to allow the

reception of all the valid messages (standard or extended) as

determined by the proper acceptance filters.

The CAN listener module had 13 registers that were used

for the message acceptance operations. These registers must be

loaded with the filters and the masks' values before the

implementation process.

L. FIFO

The CAN listener should receive the frames from the CAN

bus and perform all the processes in a real-time approach. A

bottleneck happens in the final process when the listener

should display the processed information on the display unit

which needs some delay. To solve this problem, a First In First

Out (FIFO) was implemented to store and retrieve the

processed data. This process prevented the loss of CAN frames

information.

In the CAN listener module, the FIFO was built using a

two-dimensional array called (fifo_store) where the numbers of

rows (depth of FIFO) were 2048 and the numbers of columns

(FIFO_width) were fixed to 96. Tow pointers were used to

control the function of FIFO. The first one was called

(writeptr) which increased by one whenever a new data was

loaded to the FIFO. This pointer was cleared and the (full) flag

was set to ‘1’ whenever the value of (writerptr) reached the

(depth) value.

In contrast, when the (writeptr) value is ‘0’, the (empty)

flag is set to ‘1’.

The second pointer called (readptr), this pointer increased

every time by one when the reading process was performed on

the FIFO. This pointer was cleared when the value of (readptr)

reaches the (depth) value.

IV. SERIAL PERIPHERAL INTERFACE

Serial peripheral interface (SPI) is a synchronous serial data

link standard that enables the serial exchange of data between

two devices[22].

The SPI was built to perform the connection between the

ARM Cortex-A9 processing system structure and the Series 7

Xilinx optimized programmable logic architecture to generate a

powerful design within ZedBoard. As the SPI used the master-

slave method, the programmable logic was considered as a

master, whereas the processor system considered as a slave.

The main purpose behind implementing the SPI was to send

the stored CAN information from the FIFO in the

programmable logic side serially to the processor side.

The connection of SPI was also used to send the

configuration register from the processor to the controller. Fig.

3, shows the connection and the main functions for the

implemented SPI.

Fig. 3. SPI Block Diagram

A. SPI Master

The SPI master was implemented in the programmable

logic of ZedBoard using the VHDL code. To begin the

communication process, the master should first configure the

SPI clock (SCLK) with a frequency less than or equal to the

maximum frequency of the slave side. The SCLK was derived

from the external clock source called (SPI_Crystal) in the

processor side. To adjust the value of the SCLK that was

Journal of Electrical, Electronics and Informatics, Vol. 4 No. 2, August 2020 49

configured within 1 MHz in the processor system, the SPI_

Crystal could be divided by an integer number called (clk_div).

In addition to the setting of the SCLK which was

responsible for the synchronization of the data communication,

the master should also configure the operating mode. The

configuration was done through the clock polarity (CPOL) and

clock phase (CPHA) concerning the data to be sent. Four

possible modes could be used in an SPI protocol to determine

the edges of the clock signal on which the data were driven and

sampled. Mode (0,1) was selected for connecting the PS to PL.

In this mode, the CPOL was configured with ’0’ where the

base value of the clock was zero and the CPHA was configured

with ’1’ wherein the data was captured on the second clock

edge (falling edge).

The operation of the SPI master was controlled by the

(Enable signal) that was sent from the processor over the GPIO

to prevent the SPI master for initiating the transmission till the

processor is programmed. After that, the transmission was

started by deactivating the slave select (SS) signal to inform the

slave that the master wished to start data exchange. The signal

was active low, so a low level on this line would specify the

SPI master was active. After that, the data exchange of 32 bits

was performed serially over MOSI and MISO between the

master and the slave. Subsequently, the slave select signal was

set to high logic to terminate the operation.

The information of the CAN listener had been stored in the

FIFO of 96 bits line width. Each line of this FIFO was read as

three separate sections. After that, every section of 32 bits was

loaded to the temporary register called (data_out) which was

sent serially to the slave side over MOSI.

B. SPI Slave

The Zynq-7000 devices included two independent SPI

controllers as cores (AXI SPI 0 and AXI SPI 1). The AXI SPI

0 was configured by the C code running on the processor

system to work as a slave to connect the processor with the

programmable logic [23].

 This slave was connected to the SPI master that was

implemented in PL through the Extended Multiplexed Input-

Output (EMIO).

The slave considered the transfer to begin with the first

falling edge of SS. After that, the received CAN information

from the master was stored again in a received FIFO which

was 16 lines depth. Every 3 lines represented one CAN frame

information (the first line represented the frame identifiers and

some flags, where the second and the third lines represented

the frame data).

 It means that every 15 lines described the content of 5

CAN frames. The last line (line number 16) of the receive

FIFO was filled always with dummy value that sent from the

master side for display organization. This value was not

considered during the read operation. If the receive FIFO was

full and additional data was received, all data attempted to be

written to the full receive FIFO by the SPI unit was vanished

[23].

V. OLED

As the CAN information was transferred from the

programmable logic to the processor subsystem over SPI, the

final step was to display this information. The ZedBoard had

an onboard display unit called Organic Light-Emitting Diode

and briefly (OLED) used for digital display[6]. The OLED

used the standard 12-pin connector to display CAN

information on a 128x32 pixel panel. The OLED showed the

final data written on the screen until it was shut down or a new

pattern is loaded to the display buffer [24].

To display the CAN information on the OLED, the

following procedures were completed using the C code running

on the processor system as shown in the Fig. 4:

Fig. 4. OLED Display Procedures

A. Initialization of AXI SPI & GPIO

The OLED controller was a serial device that could be

accessed using the SPI interface. The Zynq-7000 device

contained two independent SPI controllers as cores (AXI SPI 0

and AXI SPI 1)[6]. The AXI SPI 1 was configured

independently as a master to organize the operation of OLED

as well as to send the bitmap data to the display buffer.

B. Initialization of Display Controller

The initialization of the OLED consisted of a sequence of

operations as described in Fig. 5. The blue blocks represented

the initialization of the display controller, while the gray blocks

represented the configuration of display mode which was done

through a series of commands.

Fig. 5. Initialization Chain of OLED Controller [24]

C. Memory Addressing Modes

In the page addressing mode, which was used, the column

address pointer was incremented automatically by 1 when a

read/write operation was performed on the display RAM. If the

Journal of Electrical, Electronics and Informatics, p-ISSN: 2549–8304 e-ISSN: 2622–0393 50

column address pointer arrived at the column end address

position, the column address pointer was returned to the

column start address. The address pointer of one page was not

incremented automatically; thus, this operation should be done

manually to set a new page and column addresses to access the

next page RAM content [24].

The SSD1306 controller could handle 128x64 displays, but

the OLED used on ZedBoard was only 128x32. For that, the

display memory was organized as 4 pages of 128 columns

each. All characters on the OLED were represented with 8x8

bit (pixel).

D. Write a Character to the OLED-Buffer

The operation of writing a character to the OLED-buffer

was performed by using the character column number and row

number to determine the cursor position. Equation (3) was used

to create the index location for one character into the OLED

buffer:

 (3)

Where X represented the x position and Y represented the y

position for the character location. The bitmap style fonts were

stored in the display pattern, where one bit represented one

pixel of information to be displayed (monochrome font).

E. Print a String on the OLED-Buffer

As CAN information should be displayed in a string

format, the operation of writing a character to the buffer must

be repeated during the display. The OLED could show 16

characters on each page simultaneously; therefore, the writing

character function had to be repeated 16 times for each page.

F. OLED Display Organization

The display on the OLED was organized in a way where

the first page of the screen showed the string

("ID.REMOT.IDE.EID.CRC"). This string described the

content of the next page (second page) which contains the

value of the standard identifier, the value of the remote frame

flag, the value of extended identifier and finally the value of

the CRC result flag. The third page showed the string (“CAN

DATA FRAME”). This string described the content of the

fourth page which contains the CAN data field information

(RX_Data).

VI. THE PERFORMANCE & RELIABILITY TESTS

A. Test Requirements

To perform the test for the implemented CAN listener

controller, several components and software were utilized to

provide the complete environment for the CAN network as

follows:

 CAN Transceiver: In general, each node in the CAN

network should have a device that worked as a bridge

to convert the digital signals generated by the CAN

controller to differential signals that were appropriate

for the transmission over the bus. It also converted the

differential signals of the bus back to digital signals

during the reception process [25]. The implemented

3.3-V CAN transceiver (VP235) board consisted of

two ports. The RS232 port was connected to the CAN

bus and the other was connected to the Pmod header

of ZedBoard.

 CANUSB: The CANUSB was a small and low-cost

dongle that provided instant CAN connectivity. This

dongle could be plugged directly into any PC USB

port and handled by the operating system as a

standard COM Port (RS-232 serial port) which

eliminated the need for any additional drivers [26].

 CAN Hacker: To run the CANUSB dongle and to

configure its operation, software called CAN Hacker

was utilized.

 Tera Term: was an open-source terminal emulator

that supports serial port connections. It provided a

connection between the host PC and the USB-UART

port of ZedBoard using a USB cable. Tera Term was

used to display the CAN information that was sent

serially from the processor system over the USB-

UART bridge chip of Zedboard.

B. Test Bench Setup

The procedure for creating the test bench to examine the

realized CAN listener was overviewed in this section. Fig. 6,

shows the structure of the network (test bench) that was used

for the test.

Fig. 6. Test Bench Structure

In addition to the ZedBoard and laptop computer, the test

bench included six (MCP2515 CAN controller) nodes with

their transceivers, CANUSB dongle, an implemented CAN

transceiver and a custom-made CAN bus [27].

C. The Test

To test the realized CAN listener module, a series of

operations were performed sequentially. The first step was

achieved through setting the CAN Hacker software that was

used to initialize the communication and to generate the CAN

frames using the CANUSB dongle. The setting involved the

selection of bit rate from the setting menu. The bit rate was

configured with 50 kbps. After that, the frame identifier field

was filled with 0x50F and the data field was loaded with an

arbitrary payload of 8 bytes length. To make the generation of

frames repeated sequentially, the period field was enabled and

loaded with an appropriate value. Once the software was

initialized, a sequence of frames was sent to the CAN bus using

the CANUSB dongle.

Each node on the network that received the generated

frames from the CANUSB dongle should respond with another

frame. As a result, 7 different frames were traveled over the

CAN network. To add the listener node to the network, the

ZedBoard should be programmed. This was done in the SDK

tool by initializing and running the processor using the .elf file,

but first, the FPGA should be programmed with the bitstream

that included listener design code and custom PL peripheral

configuration. This process took approximately 30-60 seconds

to complete, depending on the USB-JTAG traffic. After

Journal of Electrical, Electronics and Informatics, Vol. 4 No. 2, August 2020 51

completing the programming process, the done LED was

illuminated blue and the listening process was started. Fig. 7,

provided a snapshot view of the actual test operation.

In addition to the OLED that displays the received CAN

information, the Tera Term software was also launched during

the programming process to monitor the CAN information

directly from the processor over USB-UART Bridge.

Fig. 7. Actual Test View

D. Test Result and Observation

Based on the above tests, the implemented CAN listener

module was found to be working as expected and meets the

specification required by the CAN protocol

VII. CONCLUSION

The CAN listener controller was realized correctly on the

programmable logic of ZedBoard using VHDL language. The

controller could be configured to operate with different

standard bit rates. The design code was divided into a sequence

of processes; each one performed a specific function on the

received CAN frames. No frame was sent to the CAN network

since the implemented controller worked as a listener. The

differential signals of CAN bus were converted to digital

signals by using the implemented CAN transceiver that was

connected to the ZedBoard.

The received frames were decoded correctly and saved in a

temporary buffer. After that, all the received frames were

accepted except those that have a bit-stuff error, CRC error or

those that not match with the filter criteria. Several masks were

applied accurately on the accepted frames to extract the

relevant CAN information and then loaded it to the FIFO. The

FIFO was implemented previously to store and retrieve the

CAN information. This information was sent serially to the

processor system through the SPI that was realized to connect

the implemented controller with the processor system. The SPI

master was well realized in the programmable logic, while the

slave was implemented on the processor system.

A standalone operating system was run appropriately over

the processor that enables the execution of the C code that was

written to accomplish the SPI slave and to configure the

operations of OLED that was used to display the obtained

CAN information.

The development of the design and simulation test was

performed using the Xilinx ISE WebPACK Design Suite 14

that provided the complete front-to-back design environment

and held up the embedded processor design for the Zynq

device. The final design of the CAN listener module was tested

properly and verified by connecting the module to the real

CAN network consisting of six CAN nodes.

Finally, the processor-centric architecture for the Zynq-

7000 SoC device that provided the complete processing

platform and the robust combine of on-board peripherals and

expansion capabilities of ZedBoard, had the fundamental role

to the success this project.

VIII. REFERENCES

 1. HPL, S.C.J.A.R.S., Introduction to the controller area

network (CAN). 2002: p. 1-17.

2. Di Natale, M., et al., Understanding and using the

controller area network communication protocol:

theory and practice. 2012: Springer Science &

Business Media.

3. Richards, P.J.M.T.I., A CAN physical layer discussion.

2002.

4. Jeganathan, N.S., A Controller Area Network Layer

For Reconfigurable Embedded Systems. 2007.

5. Version, B.C.S., 2.0, Robert Bosch GmbH, Stuttgart,

Germany, 1991.

6. Crockett, L.H., R.A. Elliot, and M.A. Enderwitz, The

zynq book tutorials for zybo and zedboard. 2015:

Strathclyde Academic Media.

7. Bhutada, V., S.J. , and T.Z. , Design and

Implementation of CAN Bus Controller

on FPGA. International Journal for Research in

Applied Science & Engineering Technology

(IJRASET), 2017. 5(XII).

8. Krishnamoorthy, S., Design of an ASIC chip for a

Controller Area Network (CAN) protocol controller.

2006, Texas Tech University.

9. Katyarmal, R.D. and P.J.I.J.o.E.R. Daigavane, Design

of Controller Area Network for Sensor Network

Application using Verilog-HDL. 2014. 3(4).

10. Piao, C.-h., L. Chen, and J. Cao. A design for

Controller Area Network bus real-time monitoring

system. in Proceedings of 2011 International

Conference on Computer Science and Network

Technology. 2011. IEEE.

11. Abaceoae, C. and M. Postolache. Design and

Implementation of a CAN-USB Interface for Networked

Embedded Systems. in 2018 22nd International

Conference on System Theory, Control and Computing

(ICSTCC). 2018. IEEE.

12. Gong, S., et al. Design and implementation of CAN

communication system based on SOPC technology. in

2017 Chinese Automation Congress (CAC). 2017.

IEEE.

13. Pimple, P. Sniffing the Automotive CAN Bus for Real-

time Data-logging and Real Time Diagnostics Display.

in 2018 International Conference on Smart Electric

Drives and Power System (ICSEDPS). 2018. IEEE.

14. Hao, J., J. Wu, and C. Guo. Modeling and simulation of

CAN network based on OPNET. in 2011 IEEE 3rd

International Conference on Communication Software

and Networks. 2011. IEEE.

15. Presi, T. Design and development Of PIC

microcontroller based vehicle monitoring system using

Controller Area Network (CAN) protocol. in 2013

International Conference on Information

Communication and Embedded Systems (ICICES).

2013. IEEE.

Journal of Electrical, Electronics and Informatics, p-ISSN: 2549–8304 e-ISSN: 2622–0393 52

16. Singh, V.K., K.J.I.J.o.E.T. Archana, and Technology,

Implementation of CAN Protocol in Automobiles Using

Advanced Embedded System. 2013. 4: p. 4422-4427.

17. Shinde, A.S. and V.B. Dharmadhikari, Controller area

network for vehicle automation. 2012.

18. Al-Mekkawy, M.K., et al. Reliable design of the CAN

bit synchronization block. in Proceedings of the

WSEAS Conference: Information Science,

Communications and Applications (ISCA 2005). 2005.

19. Watterson, C.J.A.N.A.-., Analog Devices, Inc,

Controller area network (CAN) implementation guide.

2012.

20. Voss, W., A comprehensible guide to controller area

network. 2008: Copperhill Media.

21. Specification, C., 2.0, Part-A and Part-B. CAN in

Automation (CiA), Am Weichselgarten 26, D-91058

Erlangen. 2002.

22. Shingare, T.D., R.J.I.J.o.I.T. Patil, and E. Engineering,

SPI implementation on fpga. 2013. 2(2): p. 7-9.

23. XILINX, LogiCORE IP AXI Serial Peripheral

Interface (AXI SPI) (v1.02.a). 2012.

24. SYSTECH, S., OLED/PLED Segment/Common Driver

with Controller in SSD1306 2008.

25. MCP–High-speed, C.J.M.T.I., Transceiver Data sheet.

2003.

26. LAWICEL, CANUSB Manual. 2011: Sweden.

27. Fink, A. and H. Beikirch. Radio-based human tracking

for large indoor environments using distributed

centroid location estimation. in 2013 IEEE 7th

International Conference on Intelligent Data

Acquisition and Advanced Computing Systems

(IDAACS). 2013. IEEE.

