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Abstract The revolution in the automotive industry over time led to more and more electronics to be included in the vehicle and 

this increased the number and space allocated for cables. Therefore, the in-vehicle cabling network has been replaced with a two-

wire bus serial communications protocol called Controller Area Network (CAN). The proposed paper described the 

implementation of the CAN controller as a listener to monitor the state of the CAN bus in a real-time approach. The CAN listener 

obtains the data from the CAN bus by using an external signals converter. The work was realized using development platform 

called ZedBoard. The controller performed a sequence of processes on the received CAN frames including decoding, buffering 

and filtering. The processed data was stored in an implemented FIFO to keep the data from loss. After that, the data was sent 

serially to the processor system over the implemented SPI that connects the controller with the processor of the Zynq-7000 

device. A single-threaded, simple operating system was run over the processor to provide a set of libraries and drivers that were 

utilized to access specific processor functions. It enabled the execution of the C code that was written to configure the operation 

of the onboard display unit. The design procedure and simulation process for the implemented CAN listener was achieved using 

the Xilinx ISE WebPACK environment, while the final complete design was properly tested and verified by connecting the 

module to a CAN network consisting of six CAN nodes. 

Index Terms—CAN, SoC, ZedBoard, FIFO, ISE WebPACK. 

I. INTRODUCTION 

The Controller Area Network is an asynchronous bus 

network that defines a standard protocol for effective and 

reliable serial communication between devices, sensors, and 

actuators for real-time control applications[1]. The CAN 

network uses the bus topology, in which every node in the 

network is connected to other nodes without using a central 

controller for the entire network. The CAN controller specifies 

the bus level by the potential difference between two wires 

that comprise the CAN bus. The CAN protocol introduces two 

logical states: dominant and recessive levels which are 

identified as a logic ‘0’ and logic ‘1’ respectively. The 

transmitting node can broadcast a message to all the receiver 

nodes by changing this bus level [2, 3].  

The CAN bus has a maximum data rate of up to 1 Mbit/s for 

a maximum distance of 40 meters. CAN protocol use 

broadcast communication technique (Multi-master bus) in 

which every node can send messages to all other nodes on the 

bus and each node selects the interesting messages using 

filters and responds only to wanted messages. The CAN bus 

provides a very high level of security, sophisticated error 

detection and correction techniques with assumptions of no 

data can be lost [4, 5]. 

The interest in CAN protocol has increased recently due to 

the large number of applications that use it and also the 

availability of the robust mix of on-board peripherals and 

expansion capabilities of ZedBoard, all these give an incentive 

to implement this important protocol on this integrated 

platform. 

The objective of this work is to implement a CAN listener 

on ZedBoard using an operating system running on the Zynq 

processor[6]. The Register Transfer Level (RTL) model of the 

CAN controller was developed using a general-purpose 

parallel programming language called VHSIC Hardware 

Description Language (VHDL) and the functional simulation 

of the model was obtained. The complete design for the 

controller was divided into twelve sub-modules where each 

one performs a special function. These sub-modules were 

integrated to work as a single unit to implement the CAN 

listener module. To configure the functions of the Zynq 

processor under the stand alone operating system, a C code is 

also written in an Object-Oriented manner. The final design of 

the CAN listener module was tested by connecting the module 

to an actual CAN network. 

The vital problem being addressed was the design and 

improvement of a one-chip solution for a CAN controller as a 

listener using the ZedBoard platform. As a listener, the CAN 

controller should not send any frame to the CAN network. The 

CAN listener acquires the data from the CAN bus by 

connecting the transceiver adapter directly to the board. The 

transceiver converts the differential signals from the network to 

digital signals. When data is received, it is necessary to decode 

the different data input streams and to realize specific protocol 

mechanisms like message buffering and filtering. After that, 

the processed data should be sent to the processor using one of 

the serial communication standards like Serial Peripheral 

Interface (SPI). Finally, the data streams should be displayed 

using the onboard display unit called OLED which is 

connected to the processor.  

An introduction to the CAN listener is given in Section I. 

Section II presents the related work. Sections III, IV and V 

show the building blocks of the developed CAN controller. 

The results, performance analysis, and the actual test explained 

in sections VI. Finally, section VII concludes this paper. 

II. LITERATURE REVIEWS 

A lot of attempts for monitoring the CAN bus have been 

made; for instance, the works in [7],[8] and [9] described the 

design, simulation and FPGA implementation of a protocol 

controller for the CAN 2.0. It also deals with the design 

process of the FPGA, coding, simulating, testing, and finally 
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programming the FPGA. The RTL based design of the CAN 

controller was implemented using Verilog HDL.  

A LabVIEW in [10] was used to compile a CAN bus 

monitor system. It abstracted the signals data from data frames 

transited in the CAN bus. A computer, plug-in hardware, and 

Lab VIEW comprised a completely configurable virtual 

instrument to accomplish tasks. A National Instruments™ 

CAN-board (NI-CAN) was used to interface a CAN bus in this 

system. 

The authors in [11] employed a 32-bit ARM Cortex-M 

series microcontroller with its on-chip CAN and USB 

peripherals were used to implement a USB-CAN adapter and 

custom firmware that could be ported on a variety of boards 

provided with these two communication interfaces. The host 

PC runs a GUI developed using standard DLL libraries 

provided by the host Windows operating system to 

demonstrate the CAN-USB gateway. 

Gong, S., et al[12], proposed the use of the reusable 

IP(Intellectual Property) technology in FPGA as the core 

controller. Also, the CAN communication system was 

implemented by System-on-a-Programmable-Chip (SOPC) 

technology. The MicroBlaze soft-core was used as an 

embedded processor in FPGA. The AXI Quad SPI core was 

used to implement the SPI control logic and the AXI INTC 

core to implement the interrupt control. MCP2515 and 

PCA82C250 were used to realize message transmission and 

reception in hardware design.  

In [13] a Real-time Data-logger was designed for 

diagnostics display. Data acquisition from the bus was 

achieved using Arduino Uno R3 and MCP2515 CAN Bus 

Shield. Vector CANoe 9.0 was used for designing and 

simulating the CAN network. The data acquisition system is 

tested on this simulated network thus, acquired data is 

displayed on MATLAB GUI which can be used for fault 

detection and analysis. 

Haoet al.[14]proposed to analyze the controller area network 

protocol in a way in which the Layered modeling method was 

adopted to build the CAN network model in the OPNET 

Modeler simulation environment. The models of Logical Link 

Control and Medium 

Access Control of CAN protocol with the functions of error 

handling and channel status detection was established in the 

OPNET node Layer and the model of CAN bus physical layer 

was designed to implement collision detection and non-

destructive arbitration functionality in the OPNET Pipeline 

Stages.  

Presi T. [15] proposed the implementation of the CAN protocol 

using a PIC microcontroller for a vehicle monitoring system. 

Two PIC microcontrollers were used; both having the CAN 

protocol as a built-in device. The main feature of the system 

included monitoring of various vehicle parameters such as 

Temperature, presence of CO2 level in the exhaust and Battery 

Voltage. The software part was implemented in MPLab IDE 

using Embedded C, while the schematic was prepared using 

OrCAD.  

It can be concluded from the previous studies that using 

microcontrollers integrated with CAN interface can degrade 

the performance, as the microcontroller is responsible for data 

communication (sending and receiving), in addition to reading 

inputs and driving outputs. This is a critical issue in industrial 

networks, where latency is a concern. In the case of using an 

individual CAN controller, there is a cost penalty as further IC 

is required, which increases the total cost for the implemented 

system. Finally, using the IP cores developed by FPGA 

manufacturers and independent designers are usually not free 

of charge. All these factors evidence the need for developing a 

CAN controller module for smart sensors networking. 

In this paper, the proposed work described the 

implementation of CAN controller as a listener to monitor and 

displayed the state of the CAN bus in a real-time approach for 

different standard bit rates. The controller was realized on the 

programmable logic of the ZedBoardplatform (SoC 

technology) using VHDL over the Xilinx ISE WebPACK 

environment. 

III. CAN LISTENER IMPLEMENTATION 

The CAN listener controller had been realized on the 

programmable logic of ZedBoard using the VHDL language. 

The design code was divided into a sequence of processes that 

were used for sequential statements to give a more powerful 

description of the design. These processes work concurrently to 

perform the listening procedure. Fig. 1, shows the flowchart of 

operations (processes) that performed on the received CAN 

frames. 

 

Fig. 1.  CAN Listener Processes 

The following is a brief description of all the processes that 

composes the CAN listener controller: 

A. Baud Rate Prescaler(BRP) 

All nodes on the CAN bus must use the same bit rate. As a 

result, the bit rate has to be calibrated for the different onboard 

oscillator clock frequency of the individual nodes in the CAN 

network[16].  

ZedBoard supplied the Programmable Logic with four 

general-purpose clock outputs. A 32 MHz was used as a 

programmable clock source called (Crystal). This sub-module 

was used to create and adjust the CAN listener system clock 

(CLK) by dividing the on-board clock source (Crystal). 

The CAN network could work with different standard bit 

rate as shown in the Table I. The bit rate of the CAN bus could 

be calculated using (1)[17]: 
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Where N is an integer number that expresses the number of 

the fixed units called Time Quanta (TQ) that used to represent 

the bit time, where each TQ equals twice the oscillator period. 

A register called Baud-Rate Prescaler (BRP) was used to 

assign values to the divisor. The BRP could be configured 

indirectly when the value of BRP is sent from the processor to 

the controller via the SPI. 
TABLE I 

BIT RATE RECOMMENDATION 

Bit Rate 

(Kbps) 

NBT 

(µsec.) 

No. of 

TQ/bit 

TQ 

Freq.(MHz) 

BRP Divisor 

1000 1 16 16 “111” 1 

500 2 16 8 “110” 2 

250 4 16 4 “101” 4 

125 8 16 2 “100” 8 

100 10 16 1.6 “011” 10 

50 20 16 0.8 “010” 20 

40 25 16 0.64 “001” 25 

20 50 16 0.32 “000” 50 

      

B. Sampling and Synchronization Process 

The CAN protocol utilized a Non-Return to Zero (NRZ) 

coding technique, which did not encode the clock inside the 

data stream; therefore, the CAN protocol used a complicated 

method of bit synchronization to compensate the phase shifts 

between the oscillator frequencies for all the nodes on the bus.  

With this method, every node in the CAN network was 

incessantly resynchronized to make sure that all the nodes are 

synchronized at the same transmission rate (same nominal bit 

rate). The nominal bit rate was the number of bits per second 

transmitted without any resynchronization [17]. 

The nominal bit time (NBT) was the time required to transmit 

a single bit on the network and can be calculated using the 

inverse of the nominal bit rate.  

The CAN bit time was comprised of four non-overlapping 

time segments. The Synchronization Segment (Sync_Seg) was 

the first segment in the nominal bit time and was utilized to 

synchronize nodes on the CAN bus. This segment had a fixed 

length (1) TQ. The transition of the bit was expected to occur 

within this segment. The second segment was the Propagation 

Time Segment (Prop-Seg), which was utilized for 

compensating the propagation delays of the signal across the 

CAN network. The length of this segment was between (1- 8) 

TQ[18]. 

Following the Prop-Seg,Phase Segment 1 (Phase_Seg l) 

was used for compensating the edge phase errors. The segment 

might lengthen during the resynchronization process. The final 

segment called Phase Segment 2 (Phase_Seg 2) was utilized 

also for compensating the edge phase errors. The segment 

might shorten during the resynchronization process. The length 

for each of the last two segments was between (1- 8) TQ [17]. 

The sample point was the point in the bit time located 

always at the end of Phase_Seg1 and it was used to read and to 

interpret the value of the current bit. 

The sampling and synchronization processes were 

performed through reading the (RX_Trans) signal from the 

transceiver, which converted the on-bus differential signals to 

digital signals. 

After that, every three consecutive values were stored in the 

temporary register called (RX_Reg). In case of the value of 

RX_Reg was equal to “110” or “001”, it means the transition 

from logic ‘1’ (recessive) to logic ‘0’ (dominant) or from logic 

‘0’ to logic ‘1’ has happened[19]. 

Every bit in the CAN listener module was represented by 

16-time quanta. Thus, the sampling point should take place in a 

bit time number 13. A ring shift register of 16 bits called (TQ) 

was used to describe the time quanta module.  

Only a single bit of TQ register was set to ‘1’ and this bit 

was shifted every time by one. Once the transition occurs, the 

bit was shifted obligatory to the bit location number 13 

(sampling point). This procedure ensured synchronization for 

the whole design, whereas every bit (P) from the TQ register 

was used as a condition to coordinate all the processes that 

performed on the received CAN bit. When the sampling point 

was reached, the first value from the (RX_Reg) register was 

loaded to the (RX_CAN) signal which represented the input 

port for the CAN listener module. 

C. Start of Frame Detection 

Start of Frame (SOF) is a single dominant bit that indicates 

the beginning of the CAN frames. The main task for this bit is 

to synchronize all nodes on the CAN network after idle bus 

state. 

 In the CAN protocol, every two continuous frames were 

separated by Interframe Space which was composed of at least 

three recessive bits called the Intermission [17]. Following the 

Intermission, the bus remains in the idle state (recessive) until 

the beginning of the transmission for the nodes. At this time the 

detection of the dominant bit (SOF) on the bus was expected. 

The detection process was performed by counting the 

number of recessive bits of bus idle state before the SOF bit. A 

counter called (Freecount) is utilized for this process. When the 

Freecount is greater than the intermission value, the first 

dominant bit that is received could be considered as the start 

for the new frame.  

D. Bit De-stuff Process 

Bit stuffing is the process of inserting non-information bits 

into the data stream in the transmitter’s side to improve 

synchronization and to provide signaling information to the 

receiver. On the receiver’s side, the de-stuffing process is 

performed to neglect the stuffed bit that is added previously. 

As the SOF bit of the received message was detected, the 

de-stuffing process should be performed to delete the stuff bits 

before the extraction of the relevant information from the 

received message. To perform that for the CAN listener design, 

several states were used as described below: 

 State (N) represented the new incoming value received 

from the bus. 

 State (H1 – H5) represented the high-level (recessive) 

values. 

 State (L1 – L5) represented the low-level (dominant) 

values. 

 State (HS, LS) represented the high-level stuff bit and 

low-level stuff bit respectively. 

 State (HE, LE) represented the high-level stuff error and 

low-level stuff error respectively. 

 

In the CAN protocol, the de-stuffing process was only 

executed on a specific range called Destuff_Range (from the 

SOF bit until the end of the CRC field). Every newly received 

value located in the Destuff_Range was loaded sequentially to 

the N state and then it compared if its ‘0’ or ‘1’. In case the N 

state has ‘0’ for five consecutive states, it went from state L1 to 

L5. 
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 After that, if the new bit comes ‘0’, the state went to LE 

(low-level stuff error), otherwise, it was going to HS (high-

level stuff bit). Whenever a high-level value ‘1’ comes in 

between the five consecutive states, the state went directly to 

H1. The special case happened with the HS state (“000001”) 

when the state N comes ‘0’, the HS went to L1, otherwise, it 

goes to H2. 

The same procedure was performed when the N state had 

‘1’ for five consecutive states (H1 to H5). After that, if the new 

value comes ‘1’, the state went to HE (high-level stuff error), 

otherwise, it was  going to LS (low-level stuff bit). When a 

low-level value ‘0’ comes in between the five consecutive 

states, the state goes directly to L1. Also, an exceptional case 

happens with the LS state (“111110”), when the state N comes 

‘1’, the LS state goes to H1,otherwise, it goes to L2. The 

procedure that describes the de-stuffing process is shown in 

Fig. 2. 

 

Fig.  2.  The De-Stuff Procedure 

To determine the validity of the received bit, a signal called 

RX_valid was used to specify if the received bit was data or 

stuff. This signal becomes ‘0’ only when there was high or low 

bit stuff (HS or LS). The other CAN listener processed work 

just in case the RX_valid is high. By using this procedure the 

stuff bit was omitted and the frame returned to its original 

value as before the staffing. 

 An error flag signal called Rx stufferr was set to ‘1’ in case 

of (LE or HE), to indicate that the received frame was 

incorrect. No error frames were sent back to the CAN bus 

because this controller works as a listener. 

E. Buffering Process 

After the SOF bit of the CAN frame has been noticed and 

the de-stuffing process has performed on the received bits, the 

clean frame should be loaded to a temporary buffer called 

(Message_Reg). The buffer was accessed constantly by every 

process in the CAN module to read the relevant data. This 

buffer must be cleared at the end of each frame and then should 

be reloaded with a fresh frame after the next receive. 

F. Frame Types 

The implemented CAN listener supported the standard data 

frames, extended data frames and remote frames (standard and 

extended). Neither error nor overload frames would be 

generated [20], since the controller worked as a listener. The 

type of received frame was determined by checking the IDE bit 

and the RTR bit in the Message_Reg buffer. These bits had 

different locations, depended on the frame type.  

When the IDE bit was ‘0’, it meant that the received frame 

was standard data frame; otherwise, the received frame was 

extended data frame. The same test was performed on the RTR 

bit to find out if the received frame is a remote frame or not. 

The remote frame could be standard or extended depending on 

the value of the IDE bit. 

G. Message Identifiers 

Every frame has a message identifier (ID) which is unique 

within the entire network. It located directly after the Start of 

Frame (SOF) bit. The ID defined the content and also the 

priority of the message that was utilized during the bus 

arbitration process when several stations compete for the bus 

access.  

In this process, a special mask was used to extract the 

message identifier. Every time the mask was applied to the 

Message_Reg buffer to read the value of the message identifier 

for each frame. After that, the value of the identifier for the 

standard data frame which was 11 bits should be loaded to the 

(ID_Reg) register. 

Once the extended data frame was received, an extra 18 bits 

should be loaded to the (EID_Reg) register which represents 

the extended identifier using the masking procedure. 

Accordingly, the total length for the identifier field became 29 

bits. 

H. Data Length Code 

Data Length Code (DLC) is a 4-bit field indicates the 

number of bytes in the data field of the CAN frames [16]. The 

DLC field has different locations in the CAN frames depending 

on the value of the Identifier Extension (IDE) bit. Another 

mask was also utilized to take out the DLC value from the 

Message_Reg.  
The acceptable values of the DLC field were zero to eight; 

point out, the data field contained data of zero to eight bytes 

length. If the value of the DLC field was bigger than eight then 

it was assumed that the frame includes eight bytes. 

I. Message Data 

One more mask was also applied to the Message_Reg 

buffer to read the actual CAN data from the data field and then 

loaded it to the (RX_Data). The length of the data field could 

be (0 - 8) byte depended on the value of the DLC register. The 

data field for the remote frame had no data, regardless of the 

DLC value. 

J. Cyclic Redundancy Checker 

Cyclic redundancy checking is a technique for detecting 

errors in the frames that have been transferred over a 

communication link. The transmitting node applied a fixed 

number of bits on a portion of the frame that was to be 

transmitted and then attached the resulting cyclic redundancy 

code on the CRC field of the frame and sent it.  

The receiving node applied the same polynomial on the 

received data. If the receiving node noticed a mismatch 

between the calculated and the received data, the CRC error 

occurred and the message was rejected.   

In the CAN listener module, the CRC value for every 

received frame was calculated by using a polynomial generator 

called CAN Polynomial which was represented in hexadecimal 

by 4599h [21]. The CRC procedure was performed on a special 

range of frame bits called (CRC_Range) which was started 
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from the SOF bit until the end of the data frame or until the end 

of the control field for the remote frame. 

The bits that located in this range were divided by the 

polynomial specified by (2): 

 

[21].(2) 

 

The remainder of this division should be loaded to the 

(crcreg) register then it compared with the value of the CRC 

field which was part of the CAN frame. In case of mismatch is 

detected, the CRC result flag (CRC result) was set to logic ‘0’ 

(incorrect frame), otherwise, it set to logic ‘1’. This function 

was implemented using a 15-bit shift register and the exclusive 

or (XOR) to perform the dividing process. 

Once the CRC_Range was ‘0’, the CRC process would do 

nothing; otherwise, the divisor was within the input (crcin). 

The divisor was then shifted by one bit, and the process was 

repeated until the divisor reaches the end of the input row.  

K. Message Acceptance Filters and Masks 

The main function of this module is to validate the 

incoming frames by checking the messages identifier (ID) to 

determine if the received frames are relevant to that particular 

node or not.  

The acceptance filter was based on a special mask that was 

used to determine which bits in the identifier were tested with 

the filters. Table II described how each bit in the identifier was 

compared with the masks and filters to determine whether the 

message was accepted or not. If any mask bit was set to a zero, 

the corresponding bit would automatically be accepted, 

regardless of the filter bit [21]. 
TABLE II 

 FILTER AND MASK OPERATION [21] 

 

Mask Bit Filter Bit Message-ID Bit Result 

0 X X Accept 

1 0 0 Accept 

1 0 1 Reject 

1 1 0 Reject 

1 1 1 Accept 

    

 

To control the reception operating modes for the valid 

frames, two bits called RXM were used. In case of the RXM 

were configured with”11”, it disabled the operation for the 

masks and the filters and the listener will receive any message 

on the bus.  

When the RXM configured with”10”, only the messages 

with the extended identifiers would be accepted if they 

matched with the filter values. On the contrary, when the RXM 

equal to”01”, only the messages with the standard identifiers 

would be received when they matched with the filter values. 

Normally, the RXM bits were cleared to”00” to allow the 

reception of all the valid messages (standard or extended) as 

determined by the proper acceptance filters.  

The CAN listener module had 13 registers that were used 

for the message acceptance operations. These registers must be 

loaded with the filters and the masks' values before the 

implementation process. 

L. FIFO 

The CAN listener should receive the frames from the CAN 

bus and perform all the processes in a real-time approach. A 

bottleneck happens in the final process when the listener 

should display the processed information on the display unit 

which needs some delay. To solve this problem, a First In First 

Out (FIFO) was implemented to store and retrieve the 

processed data. This process prevented the loss of CAN frames 

information. 

In the CAN listener module, the FIFO was built using a 

two-dimensional array called (fifo_store) where the numbers of 

rows (depth of FIFO) were 2048 and the numbers of columns 

(FIFO_width) were fixed to 96. Tow pointers were used to 

control the function of FIFO. The first one was called 

(writeptr) which increased by one whenever a new data was 

loaded to the FIFO. This pointer was cleared and the (full) flag 

was set to ‘1’ whenever the value of (writerptr) reached the 

(depth) value.  

In contrast, when the (writeptr) value is ‘0’, the (empty) 

flag is set to ‘1’. 

The second pointer called (readptr), this pointer increased 

every time by one when the reading process was performed on 

the FIFO. This pointer was cleared when the value of (readptr) 

reaches the (depth) value. 

IV. SERIAL PERIPHERAL INTERFACE 

Serial peripheral interface (SPI) is a synchronous serial data 

link standard that enables the serial exchange of data between 

two devices[22].  

The SPI was built to perform the connection between the 

ARM Cortex-A9 processing system structure and the Series 7 

Xilinx optimized programmable logic architecture to generate a 

powerful design within ZedBoard. As the SPI used the master-

slave method, the programmable logic was considered as a 

master, whereas the processor system considered as a slave. 

The main purpose behind implementing the SPI was to send 

the stored CAN information from the FIFO in the 

programmable logic side serially to the processor side. 

The connection of SPI was also used to send the 

configuration register from the processor to the controller. Fig. 

3, shows the connection and the main functions for the 

implemented SPI. 

 

 

Fig. 3.  SPI Block Diagram 

A. SPI Master 

The SPI master was implemented in the programmable 

logic of ZedBoard using the VHDL code. To begin the 

communication process, the master should first configure the 

SPI clock (SCLK) with a frequency less than or equal to the 

maximum frequency of the slave side. The SCLK was derived 

from the external clock source called (SPI_Crystal) in the 

processor side. To adjust the value of the SCLK that was 
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configured within 1 MHz in the processor system, the SPI_ 

Crystal could be divided by an integer number called (clk_div). 

In addition to the setting of the SCLK which was 

responsible for the synchronization of the data communication, 

the master should also configure the operating mode. The 

configuration was done through the clock polarity (CPOL) and 

clock phase (CPHA) concerning the data to be sent. Four 

possible modes could be used in an SPI protocol to determine 

the edges of the clock signal on which the data were driven and 

sampled. Mode (0,1) was selected for connecting the PS to PL. 

In this mode, the CPOL was configured with ’0’ where the 

base value of the clock was zero and the CPHA was configured 

with ’1’ wherein the data was captured on the second clock 

edge (falling edge). 

The operation of the SPI master was controlled by the 

(Enable signal) that was sent from the processor over the GPIO 

to prevent the SPI master for initiating the transmission till the 

processor is programmed. After that, the transmission was 

started by deactivating the slave select (SS) signal to inform the 

slave that the master wished to start data exchange. The signal 

was active low, so a low level on this line would specify the 

SPI master was active. After that, the data exchange of 32 bits 

was performed serially over MOSI and MISO between the 

master and the slave. Subsequently, the slave select signal was 

set to high logic to terminate the operation. 

The information of the CAN listener had been stored in the 

FIFO of 96 bits line width. Each line of this FIFO was read as 

three separate sections. After that, every section of 32 bits was 

loaded to the temporary register called (data_out) which was 

sent serially to the slave side over MOSI. 

B. SPI Slave 

The Zynq-7000 devices included two independent SPI 

controllers as cores (AXI SPI 0 and AXI SPI 1). The AXI SPI 

0 was configured by the C code running on the processor 

system to work as a slave to connect the processor with the 

programmable logic [23]. 

 This slave was connected to the SPI master that was 

implemented in PL through the Extended Multiplexed Input-

Output (EMIO). 

The slave considered the transfer to begin with the first 

falling edge of SS. After that, the received CAN information 

from the master was stored again in a received FIFO which 

was 16 lines depth. Every 3 lines represented one CAN frame 

information (the first line represented the frame identifiers and 

some flags, where the second and the third lines represented 

the frame data). 

 It means that every 15 lines described the content of 5 

CAN frames. The last line (line number 16) of the receive 

FIFO was filled always with dummy value that sent from the 

master side for display organization. This value was not 

considered during the read operation. If the receive FIFO was 

full and additional data was received, all data attempted to be 

written to the full receive FIFO by the SPI unit was vanished 

[23]. 

V. OLED 

As the CAN information was transferred from the 

programmable logic to the processor subsystem over SPI, the 

final step was to display this information. The ZedBoard had 

an onboard display unit called Organic Light-Emitting Diode 

and briefly (OLED) used for digital display[6]. The OLED 

used the standard 12-pin connector to display CAN 

information on a 128x32 pixel panel. The OLED showed the 

final data written on the screen until it was shut down or a new 

pattern is loaded to the display buffer [24]. 

To display the CAN information on the OLED, the 

following procedures were completed using the C code running 

on the processor system as shown in the Fig. 4:  

 

 

Fig. 4.  OLED Display Procedures 

A. Initialization of AXI SPI & GPIO 

The OLED controller was a serial device that could be 

accessed using the SPI interface. The Zynq-7000 device 

contained two independent SPI controllers as cores (AXI SPI 0 

and AXI SPI 1)[6]. The AXI SPI 1 was configured 

independently as a master to organize the operation of OLED 

as well as to send the bitmap data to the display buffer.  

B. Initialization of Display Controller 

The initialization of the OLED consisted of a sequence of 

operations as described in Fig. 5. The blue blocks represented 

the initialization of the display controller, while the gray blocks 

represented the configuration of display mode which was done 

through a series of commands. 

 

 

Fig.  5.  Initialization Chain of OLED Controller [24] 

C. Memory Addressing Modes 

In the page addressing mode, which was used, the column 

address pointer was incremented automatically by 1 when a 

read/write operation was performed on the display RAM. If the 



Journal of Electrical, Electronics and Informatics, p-ISSN: 2549–8304 e-ISSN: 2622–0393  50 

 

 

column address pointer arrived at the column end address 

position, the column address pointer was returned to the 

column start address. The address pointer of one page was not 

incremented automatically; thus, this operation should be done 

manually to set a new page and column addresses to access the 

next page RAM content [24]. 

The SSD1306 controller could handle 128x64 displays, but 

the OLED used on ZedBoard was only 128x32. For that, the 

display memory was organized as 4 pages of 128 columns 

each. All characters on the OLED were represented with 8x8 

bit (pixel). 

D. Write a Character to the OLED-Buffer 

The operation of writing a character to the OLED-buffer 

was performed by using the character column number and row 

number to determine the cursor position. Equation (3) was used 

to create the index location for one character into the OLED 

buffer:  

 

                         (3) 

 

Where X represented the x position and Y represented the y 

position for the character location. The bitmap style fonts were 

stored in the display pattern, where one bit represented one 

pixel of information to be displayed (monochrome font).  

E. Print a String on the OLED-Buffer 

As CAN information should be displayed in a string 

format, the operation of writing a character to the buffer must 

be repeated during the display. The OLED could show 16 

characters on each page simultaneously; therefore, the writing 

character function had to be repeated 16 times for each page. 

F. OLED Display Organization 

The display on the OLED was organized in a way where 

the first page of the screen showed the string 

("ID.REMOT.IDE.EID.CRC"). This string described the 

content of the next page (second page) which contains the 

value of the standard identifier, the value of the remote frame 

flag, the value of extended identifier and finally the value of 

the CRC result flag. The third page showed the string (“CAN 

DATA FRAME”). This string described the content of the 

fourth page which contains the CAN data field information 

(RX_Data).  

VI. THE PERFORMANCE & RELIABILITY TESTS 

A. Test Requirements 

To perform the test for the implemented CAN listener 

controller, several components and software were utilized to 

provide the complete environment for the CAN network as 

follows: 

 CAN Transceiver: In general, each node in the CAN 

network should have a device that worked as a bridge 

to convert the digital signals generated by the CAN 

controller to differential signals that were appropriate 

for the transmission over the bus. It also converted the 

differential signals of the bus back to digital signals 

during the reception process [25]. The implemented 

3.3-V CAN transceiver (VP235) board consisted of 

two ports. The RS232 port was connected to the CAN 

bus and the other was connected to the Pmod header 

of ZedBoard. 

 

 CANUSB: The CANUSB was a small and low-cost 

dongle that provided instant CAN connectivity. This 

dongle could be plugged directly into any PC USB 

port and handled by the operating system as a 

standard COM Port (RS-232 serial port) which 

eliminated the need for any additional drivers [26]. 

 CAN Hacker: To run the CANUSB dongle and to 

configure its operation, software called CAN Hacker 

was utilized. 

 Tera Term: was an open-source terminal emulator 

that supports serial port connections. It provided a 

connection between the host PC and the USB-UART 

port of ZedBoard using a USB cable. Tera Term was 

used to display the CAN information that was sent 

serially from the processor system over the USB-

UART bridge chip of Zedboard.  

B. Test Bench Setup 

The procedure for creating the test bench to examine the 

realized CAN listener was overviewed in this section. Fig. 6, 

shows the structure of the network (test bench) that was used 

for the test.  

 

Fig.  6.  Test Bench Structure 

In addition to the ZedBoard and laptop computer, the test 

bench included six (MCP2515 CAN controller) nodes with 

their transceivers, CANUSB dongle, an implemented CAN 

transceiver and a custom-made CAN bus [27]. 

C. The Test 

To test the realized CAN listener module, a series of 

operations were performed sequentially. The first step was 

achieved through setting the CAN Hacker software that was 

used to initialize the communication and to generate the CAN 

frames using the CANUSB dongle. The setting involved the 

selection of bit rate from the setting menu. The bit rate was 

configured with 50 kbps. After that, the frame identifier field 

was filled with 0x50F and the data field was loaded with an 

arbitrary payload of 8 bytes length. To make the generation of 

frames repeated sequentially, the period field was enabled and 

loaded with an appropriate value. Once the software was 

initialized, a sequence of frames was sent to the CAN bus using 

the CANUSB dongle. 

Each node on the network that received the generated 

frames from the CANUSB dongle should respond with another 

frame. As a result, 7 different frames were traveled over the 

CAN network. To add the listener node to the network, the 

ZedBoard should be programmed. This was done in the SDK 

tool by initializing and running the processor using the .elf file, 

but first, the FPGA should be programmed with the bitstream 

that included listener design code and custom PL peripheral 

configuration. This process took approximately 30-60 seconds 

to complete, depending on the USB-JTAG traffic. After 
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completing the programming process, the done LED was 

illuminated blue and the listening process was started. Fig. 7, 

provided a snapshot view of the actual test operation.    

In addition to the OLED that displays the received CAN 

information, the Tera Term software was also launched during 

the programming process to monitor the CAN information 

directly from the processor over USB-UART Bridge.  

 

 

Fig.  7. Actual Test View 

D. Test Result and Observation 

Based on the above tests, the implemented CAN listener 

module was found to be working as expected and meets the 

specification required by the CAN protocol 

VII. CONCLUSION 

The CAN listener controller was realized correctly on the 

programmable logic of ZedBoard using VHDL language. The 

controller could be configured to operate with different 

standard bit rates. The design code was divided into a sequence 

of processes; each one performed a specific function on the 

received CAN frames. No frame was sent to the CAN network 

since the implemented controller worked as a listener. The 

differential signals of CAN bus were converted to digital 

signals by using the implemented CAN transceiver that was 

connected to the ZedBoard.  

The received frames were decoded correctly and saved in a 

temporary buffer. After that, all the received frames were 

accepted except those that have a bit-stuff error, CRC error or 

those that not match with the filter criteria. Several masks were 

applied accurately on the accepted frames to extract the 

relevant CAN information and then loaded it to the FIFO. The 

FIFO was implemented previously to store and retrieve the 

CAN information. This information was sent serially to the 

processor system through the SPI that was realized to connect 

the implemented controller with the processor system. The SPI 

master was well realized in the programmable logic, while the 

slave was implemented on the processor system.  

A standalone operating system was run appropriately over 

the processor that enables the execution of the C code that was 

written to accomplish the SPI slave and to configure the 

operations of OLED that was used to display the obtained 

CAN information.  

The development of the design and simulation test was 

performed using the Xilinx ISE WebPACK Design Suite 14 

that provided the complete front-to-back design environment 

and held up the embedded processor design for the Zynq 

device. The final design of the CAN listener module was tested 

properly and verified by connecting the module to the real 

CAN network consisting of six CAN nodes. 

Finally, the processor-centric architecture for the Zynq-

7000 SoC device that provided the complete processing 

platform and the robust combine of on-board peripherals and 

expansion capabilities of ZedBoard, had the fundamental role 

to the success this project. 
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