Identification of Antibiotic Resistance Gene to Amoxicillin in River: As a Proof of Concept toward AMR Pollution

  • Nurul Izzati Universitas Teknologi Sumbawa
  • Nurul Amri Komarudin Universitas Teknologi Sumbawa dan University of Singaperbangsa Karawang http://orcid.org/0000-0002-3327-6930
  • Sri Hasdayanti Universitas Teknologi Sumbawa
  • Maya Aprilia

Abstract

Antimicrobial Resistance burdens almost all nations, ranking among the top 10 threats identified by the World Health Organization. The transmission of AMR in the environment presents a dimension of lacking data in Indonesia, especially regarding rivers. AMR distribution in rivers is facilitated by antibiotic-resistant genes, and these genetic materials can be transferred to other microorganisms in the water. The mutated penicillin-binding protein 1A (pbp1a) is one of the genes that plays a role in amoxicillin resistance. It is well-documented that amoxicillin is one of the most prescribed antibiotics in primary healthcare settings, including in Sumbawa. Therefore, this study aims to identify the pbp1A gene in the Brang Biji river, Sumbawa, as a proof of concept for ARG transmission in water surfaces. The study found that more than 300,000 CFU/mL colonies grew on agar medium with 0.5 mg/mL amoxicillin at sites downstream of hospital WWTP effluent, followed by a decrease to around 50,000 CFU/mL further downstream. Two colonies, one white and one cream-colored, were susceptible to amoxicillin based on disk diffusion antimicrobial susceptibility tests. Moreover, both white and cream colonies were found to carry the mutated pbp1A gene according to the PCR method. This preliminary study can serve as valuable information for further analysis and more comprehensive research.

Downloads

Download data is not yet available.

References

Akhavan, B.J., Khanna, N.R., Vijhani, P. (2023). Amoxicillin. NCBI Bookshelf [Internet]. [accessed 2024 Mar 13]. https://www.ncbi.nlm.nih.gov/books/NBK482250.
Attaran, B., Salehi, N., Ghadiri, B., Esmaeili, M., Kalateh, S., Tashakoripour, M., Eshagh Hosseini, M., & Mohammadi, M. (2021). The penicillin binding protein 1A of Helicobacter pylori, its amoxicillin binding site and access routes. Gut Pathogens, 13(1). https://doi.org/10.1186/s13099-021-00438-0.
Bernal-Bayard, J., Morales, F. (2019). Molecular mechanisms used by penicillin-binding proteins to resist beta-lactam antibiotics. Frontiers in Microbiology, 10, 913. https://doi.org/10.1046/j.1365-2958.1999.01521.x.
Bernatová, S., Samek, O., Pilát, Z., Šerý, M., Ježek, J., Jákl, P., Šiler, M., Krzyžánek, V., Zemánek, P., Holá, V., Dvořáčková, M., & Růžička, F. (2013). Following the mechanisms of bacteriostatic versus bactericidal action using raman spectroscopy. Molecules, 18(11), 13188–13199. https://doi.org/10.3390/molecules181113188.
Bhavnani SM, Ambrose PG, Craig WA, Dudley MN, Jones RN. 2006. Outcomes evaluation of patients with ESBL- and non–ESBL-producing Escherichia coli and Klebsiella species as defined by CLSI reference methods: report from the SENTRY Antimicrobial Surveillance Program. Diagnostic Microbiology and Infectious Disease. 54(3):231–236. https://doi.org/10.1016/j.diagmicrobio.2005.09.011.
CDC. (2022a). How do germs become resistant? Centers for Disease Control and Prevention [Internet]. [accessed 2024 Mar 13]. https://www.cdc.gov/drugresistance/about/how-resistance-happens.html.
CDC. (2022b). The biggest antibiotic-resistant threats in the U.S. Centers for Disease Control and Prevention [Internet]. [accessed 2024 Mar 13]. https://www.cdc.gov/drugresistance/biggest-threats.html.
CDC. (2022c). How do germs become resistant? Centers for Disease Control and Prevention [Internet]. [accessed 2024 Mar 13]. https://www.cdc.gov/drugresistance/about/how-resistance-happens.html.
Chambers, P. (2019). Standard Methods for the Examination of Water and Wastewater. [place unknown]: Scientific e-Resources.
Clinical and Laboratory Standards Institute. (2019). In: Springer Reference Medizin [Internet]. Berlin, Heidelberg: Springer Berlin Heidelberg; [accessed 2024 Mar 13]; p. 604–604. http://dx.doi.org/10.1007/978-3-662-48986-4_300416.
Contreras-Martel, C., Job, V., Di Guilmi, A.M., Vernet, T., Dideberg, O., Dessen, A. (2006). Crystal Structure of Penicillin-binding Protein 1a (PBP1a) Reveals a Mutational Hotspot Implicated in β-Lactam Resistance in Streptococcus pneumoniae. Journal of Molecular Biology. 355(4):684–696. https://doi.org/10.1016/j.jmb.2005.10.030.
Contreras-Martel, C., Job, V., Di Guilmi, A. M., Vernet, T., Dideberg, O., & Dessen, A. (2006). Crystal Structure of Penicillin-binding Protein 1a (PBP1a) Reveals a Mutational Hotspot Implicated in β-Lactam Resistance in Streptococcus pneumoniae. Journal of Molecular Biology, 355(4), 684–696. https://doi.org/10.1016/j.jmb.2005.10.030 .
Didelot, X., Walker, A. S., Peto, T. E., Crook, D. W., & Wilson, D. J. (2016). Within-host evolution of bacterial pathogens. Nature Reviews Microbiology, 14(3), 150–162. https://doi.org/10.1038/nrmicro.2015.13.
EUCAST. (2024). Eucast Breakpoint Tables for Interpretation of MICs and Zone Diameters, Version 5.0 Available. [accessed 2024 Mar 13]. http://www.eucast.org/.
Fauzia, K. A., Aftab, H., Tshibangu-Kabamba, E., Alfaray, R. I., Saruuljavkhlan, B., Cimuanga-Mukanya, A., Matsumoto, T., Subsomwong, P., Akada, J., Miftahussurur, M., & Yamaoka, Y. (2023). Mutations Related to Antibiotics Resistance in Helicobacter pylori Clinical Isolates from Bangladesh. Antibiotics, 12(2), 279. https://doi.org/10.3390/antibiotics12020279.
Francesco, V.D. (2011). Mechanisms ofHelicobacter pyloriantibiotic resistance: An updated appraisal. World Journal of Gastrointestinal Pathophysiology. 2(3):35. https://doi.org/10.4291/wjgp.v2.i3.35.
Gerrits, M. M., Godoy, A. P. O., Kuipers, E. J., Ribeiro, M. L., Stoof, J., Mendonça, S., Van Vliet, A. H. M., Pedrazzoli, J., Jr, & Kusters, J. G. (2006). Multiple Mutations in or Adjacent to the Conserved Penicillin‐Binding Protein Motifs of the Penicillin‐Binding Protein 1A Confer Amoxicillin Resistance to Helicobacter pylori. Helicobacter, 11(3), 181–187. https://doi.org/10.1111/j.1523-5378.2006.00398.x.
Gouvras, G. (2004). The European Centre for Disease Prevention and Control. Eurosurveillance. 9(10):1–2. https://doi.org/10.2807/esm.09.10.00478-en.
Gregory, A. (2022). Antimicrobial resistance now a leading cause of death worldwide, study finds. The Guardian [Internet]. [accessed 2024 Mar 13]. https://www.theguardian.com/society/2022/jan/20/antimicrobial-resistance-antibiotic-resistant-bacterial-infections-deaths-lancet-study.
Ilmi, A. M., Adiba, F., Anisah, K., Awaliyah, A. R., Heruputri, N. V., Kasuga, I., Priadi, C. R., & Rahmatika, I. (2024). Removal of antibiotic resistant bacteria in wastewater treatment plants. E3S Web of Conferences, 485, 04006. https://doi.org/10.1051/e3sconf/202448504006.
Jacoby, G. A., Han, P. (1996). Detection of extended-spectrum beta-lactamases in clinical isolates of Klebsiella pneumoniae and Escherichia coli. Journal of Clinical Microbiology, 34(4), 908–911. https://doi.org/10.1128/jcm.34.4.908-911.1996.
Jenkins, S. G., Schuetz, A. N. (2012). Current concepts in laboratory testing to guide antimicrobial therapy. Mayo Clinic Proceedings, 87(3), 290–308. https://doi.org/10.1016/j.mayocp.2012.01.007.
Khan, M. S., Rahman, M. S. (2021). Introduction on techniques to measure food safety and quality. In Techniques to Measure Food Safety and Quality (pp. 1–10). Springer International Publishing. http://dx.doi.org/10.1007/978-3-030-68636-9_1.
Laxminarayan, R., Matsoso, P., Pant, S., Brower, C., Røttingen, J-A., Klugman, K., Davies, S. (2016). Access to effective antimicrobials: a worldwide challenge. The Lancet. 387(10014):168–175. https://doi.org/10.1016/s0140-6736(15)00474-2
Le Page, S. (2016). Evaluation of the Scan® 1200, a rapid tool for reading antibiotic susceptibility testing by the disk diffusion technique. Morressier. http://dx.doi.org/10.26226/morressier.56d6be76d462b80296c977bd.
Liang, H., Huang, J., Tao, Y., Klümper, U., Berendonk, T. U., Zhou, K., Xia, Y., Yang, Y., Yu, Y., Yu, K., Lin, L., Li, X., & Li, B. (2024). Investigating the antibiotic resistance genes and their potential risks in the megacity water environment: A case study of Shenzhen Bay Basin, China. Journal of Hazardous Materials, 465, 133536. https://doi.org/10.1016/j.jhazmat.2024.133536.
Libretexts. (2021). Introduction Growth Media. Libretexts [Internet]. [accessed 2024 Mar 13]. https://bio.libretexts.org/Courses/North_Carolina_State_University/MB352_General_Microbiology_Laboratory_2021_(Lee)/02%3A_Cultivation_of_Microbes/2.01%3A_Introduction_Growth_Media.
Liguori, K., Keenum, I., Davis, B. C., Calarco, J., Milligan, E., Harwood, V. J., & Pruden, A. (2022). Antimicrobial resistance monitoring of water environments: A framework for standardized methods and quality control. Environmental Science & Technology, 56(13), 9149–9160. https://doi.org/10.1021/acs.est.1c08918.
Lu, J., Zhang, Y., Wu, J., Wang, J., Zhang, C., & Lin, Y. (2019). Occurrence and spatial distribution of antibiotic resistance genes in the Bohai Sea and Yellow Sea areas, China. Environmental Pollution, 252, 450–460. https://doi.org/10.1016/j.envpol.2019.05.143.
Madigan, M.T., Martinko, J.M. (2006). Brock Biology of Microorganisms: Prentice Hall.
Manual of Commercial Methods in Clinical Microbiology. (2016): John Wiley & Sons.
Novianto, R. (2022). WHO Sebut Tingkat Resistensi Antibiotik di Indonesia Tinggi. KBRid [Internet]. [accessed 2024 Mar 13]. https://kbr.id/nasional/09-2022/who-sebut-tingkat-resistensi-antibiotik-di-indonesia-tinggi/109504.html.
Poupard, J.A., Walsh, L.R., Kleger, B. (2013). Antimicrobial Susceptibility Testing: Critical Issues for the 90s: Springer Science & Business Media.
Prasaja, B., Pristianty, L., Rahem, A. (2024). Analisis Rencana Kebutuhan Obat Menggunakan Metode Konsumsi dan Ketersediaan Obat Antibiotik di Rumah Sakit Umum Daerah Sumbawa. Malahayati Nursing Journal. 6(1):367–379. https://doi.org/10.33024/mnj.v6i1.10368.
Pruden, A., Alcalde, R. E., Alvarez, P. J. J., Ashbolt, N., Bischel, H., Capiro, N. L., Crossette, E., Frigon, D., Grimes, K., Haas, C. N., Ikuma, K., Kappell, A., LaPara, T., Kimbell, L., Li, M., Li, X., McNamara, P., Seo, Y., Sobsey, M. D., … Zhou, Z. (2018). An environmental science and engineering framework for combating antimicrobial resistance. Environmental Engineering Science, 35(10), 1005–1011. https://doi.org/10.1089/ees.2017.0520.
Regulation of the Indonesian Food and Drug Supervisory Agency no. 14 of 2021 concerning Certification of Good Traditional Medicine Manufacturing Methods. UNEP Law and Environment Assistance Platform [Internet]. [accessed 2024 Mar 13]. https://leap.unep.org/en/countries/id/national-legislation/regulation-indonesian-food-and-drug-supervisory-agency-no-14-2021.
Rusydi, A.F. (2018). Correlation between conductivity and total dissolved solid in various type of water: A review. IOP Conference Series: Earth and Environmental Science. 118:012019. https://doi.org/10.1088/1755-1315/118/1/012019.
Sauvage, E., Terrak, M. (2016). Glycosyltransferases and Transpeptidases/Penicillin-Binding Proteins: Valuable Targets for New Antibacterials. Antibiotics. 5(1):12. https://doi.org/10.3390/antibiotics5010012.
Siahaan, S., Herman, M.J., Fitri, N. (2022). Antimicrobial Resistance Situation in Indonesia: A Challenge of Multisector and Global Coordination. Journal of Tropical Medicine. 2022:1–10. https://doi.org/10.1155/2022/2783300.
Smith, R. E., Salam, A. M. A., Hafiz, T. A. (2018). Characterization of mutations in pbp1A involved in amoxicillin resistance in clinical isolates of Streptococcus pneumoniae. Journal of Medical Microbiology, 67(11), 1581-1586. https://doi.org/10.1016/s1433-1128(03)80604-6.
The Fifth National Report of Indonesia to the Convention on Biological Diversity. (2024). [accessed 2024 Mar 13]. https://www.cbd.int/doc/world/id/id-nr-05-en.pdf.
Tran, T. T., Nguyen, A. T., Quach, D. T., Pham, D. T.-H., Cao, N. M., Nguyen, U. T.-H., Dang, A. N.-T., Tran, M. A., Quach, L. H., Tran, K. T., Le, N. Q., Ung, V. V., Vo, M. N.-Q., Nguyen, D. T., Ngo, K. D., Tran, T. L., & Nguyen, V. T. (2022). Emergence of amoxicillin resistance and identification of novel mutations of the pbp1A gene in Helicobacter pylori in Vietnam. BMC Microbiology, 22(1). https://doi.org/10.1186/s12866-022-02463-8.
Zhu, N.J., Ghosh, S., Edwards, M.A., Pruden, A. (2021). Interplay of Biologically Active Carbon Filtration and Chlorine-Based Disinfection in Mitigating the Dissemination of Antibiotic Resistance Genes in Water Reuse Distribution Systems. Environmental Science & Technology. 55(12):8329–8340. https://doi.org/10.1021/acs.est.1c01199.
Published
2025-01-05
How to Cite
IZZATI, Nurul et al. Identification of Antibiotic Resistance Gene to Amoxicillin in River: As a Proof of Concept toward AMR Pollution. International Journal of Biosciences and Biotechnology, [S.l.], v. 12, n. 1, p. 1-14, jan. 2025. ISSN 2655-9994. Available at: <https://ojs.unud.ac.id/index.php/jbb/article/view/117410>. Date accessed: 30 jan. 2025. doi: https://doi.org/10.24843/IJBB.2024.v12.i01.p01.