Hack.exe Malware Analysis and Investigation Using Memory Forensics

Avie Triantoro¹, Nur Widiyasono², and Rohmat Gunawan³

^{1,2,3}Informatics, Siliwangi University, Tasikmalaya, Indonesia *avietriantoro@gmail.com

Abstract Currently, the development of malware is very fast. Malware is inevitably created or developed every day. In early 2020 there was a Hack.exe Malware attack which was a form of cybercrime. These crimes impact data that has been exploited for crimes at the next level. Expertise in the process of investigating malware analysis requires sufficient knowledge so that the results obtained in this study are malware architecture, the impact of attacks, the process of identifying the type of malware. Knowing the type of malware, a "countermeasure" can be done to protect devices infected with this type of malware. The method used for malware analysis is dynamic and memory forensics so that it can be seen that the malware process infects the system and then retrieves the victim's data, then the malware will make a connection or communication at the ip address 24.146.133.195. name ip address OOL-CPE-YNKRNY-24-146-128-0-20. The next process is the malware to shut down its system.

Index Terms— Malware Analysis, Dynamic, Hack, Memory Forensics.

I. INTRODUCTION

Today, data is the most valuable asset. The techniques used to steal data vary widely. One of the ways is by using malware that is distributed by inserting it in an application or through certain files [1]. The survey institute stated that in the March 2019 edition there was 300,000 new malware created every day [2].

Malware is created to damage or break into software and damage the operating system. The script that the attacker kept secret. The rapid development of malware requires users to be more strict and aware of the security of their data. Companies investing in the security of their data, but malware attacks continue to grow [3].

Malware is defined as any malware, malicious computer program, or malicious software, such as viruses (computers), trojans, spyware, and worms [4].Due to the increase in malware attacks, investigators are needed to carry out investigations. Performing a malware analysis requires special skills to detect and understand how the malware works. Malware is broadly divided into several categories, namely worms, viruses, Trojan horses, adware, and exploits. These types are the most frequently found bias, where each of these categories has different specifications [5]

Hack.exe is a family of zloaders, where since January 1, 2020, there have been many fraudulent emails feeds on various subjects, including prevention of COVID-19 fraud and the malware can steal user data and information [6]. Malware analysis using reverse engineering and memory forensic methods is one of the solutions that can be used today. Reverse engineering is used in the cyber world to find hidden information. Memory forensics is the analysis are used to track malware traces [7]. This research [4] performs analysis using dynamic methods and reverse engineering to be able to fully explain the characteristics of the Malware Flawed Ammyy RAT. The Flawed Ammyy malware has 12 functions, including malware that takes over the pointer function, compresses files, determines ANSI or OEM code functions, functions to select files that meet certain conditions, functions to handle predefined modules, determines whether files can be executed or no, can change the name of entries in the phonebook, compare a specific number of characters, can load a specific resource menu, and the function adjusts the buffer to the specified character.

This research [8] performed by reverse engineering technical analysis on biscuit malware to carry out the classification and identification of malware. The result of this research is that the classification process for malware identification can first be uploaded to the malware repository. The reverse engineering process can be carried out with standard procedures such as analyzing malware and analyzing the identity of malware.

II. LITERATURE REVIEW

A. Malware

Malware is malicious software that is deliberately programmed to damage a system or acquire computer data without the user knowing it. Viruses, Worms, Trojans, Key Loggers, Spyware, and Ransomware are examples of most malware us [9].

B. Dynamic Analysis

The analysis process is carried out by executing so that later it can monitor function calls, track information, perform function parameter analysis and trace instructions. Applications that feel suspect are usually run in a virtualized scope. An application behaves abnormally so the application can be categorized as a malicious application [10]

C. Memory Forensic

Memory Forensic is a way of analyzing sophisticated malware, root, and can detect cybercrime. Memory forensics is very useful in analyzing malware because it can be easily applied regardless of technology, system operations, software, and file systems [11]. The volatility tool allows identifying cyberattacks using malware or not [12].

III. METODOLOGY

This research has the following flow:

Fig 1. Research methodology flow

1. Malware Analysis

Malware analysis is carried out to get initial information about the malware that will be tested. This analysis will later find out where the sample was obtained, what is the MD5 value, what is the size of the malware hack file, and the type of malware hack file.

2. Dynamic Analysis

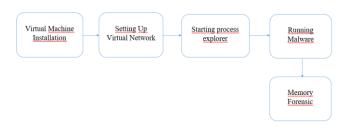


Fig 2. Dynamic analysis method flow

Virtual Machine Installation

The safe scope of research in malware analysis testing is within the virtual scope for performing malware sample testing. The scope of virtual machines is known as virtual machines. Testing is done in a virtual form intended to keep physical computers safe against the effects of the malware being examined. The virtual machine specifications used are as follows in Table I.

TABLE I SPECIFICATION VIRTUAL MACHINE

Operating system	Windows 7	
Memory	3040MB	
Number of Processors	1	
Storage	32GB	
Network	NAT	

Setting Up Virtual Network

setting up Virtual Network to perform network manipulation to fake a DNS response at the specified ip address on the local machine. Tools used to manipulate this network using ApateDNS.

Starting process explorer

Starting process explorer using the tools process monitor version 3.53, where these tools are used to see all processes that are running.

Running Malware

Running Malwaredone to see the behavior of malware when run. Testing is carried out in a virtual scope so that physical computers are safe from being affected by malware behavior

Memory Forensic

memory forensics volatility tools, to identify processes running in memory. Volatility can display all processes running on the computer and can also see the connections made by malware.

IV. RESULT AND DISCUSSION

1. Malware Analysis

Malware can be found on the website https://any.run/ as in Fig 3.

			A management of a management of the second s
Windows 7 Professional 32bit 03 September 2020, 18:11	Nelcos acivity †	HACK.com PEI2 associable (211) Into HITOR, for NET Windows stadier trajen techt stadier lastier paraulie	исе () разбитички тоготоровски так зна: () виснатичника контальфикатотов знаж. () катартански политичка составления партнаяетани
Windows 7 Professional 32bit 24 August 2020, 08:19	Noiches activity	HACK.exe PE2 coestable (201) Inte HISBN, for VE Windows trige tartist skader lauder peculie stader	исе () разбитивоскутотусковатана 9411 () бисклятичных поставорожетотана 94036 () раторази начитиски поставоно решенска партиванана
Windows 7 Professional 32bit 10 July 2020, 21:46	Without schily	HACK.com PE22 constable (SLI) into HEDR, for VES Hindows stader tagina techti stader kader panalte	ис. () разгитичискутотоголеротоки яна: () англитичиски сотоголородитити янаж: () ратоголитичиски состоголородитититититити янаж: () ратоголитичиски состоголородититити
Windows 7 Professional 32bit 26 June 2020, 22.21	Wildow achily ÷	HACK.com PEZ constable (201) Into 80206, for VE Windows tripo textat datador jacoble disalor	ма: () калектичиски тогосовалови яна: () баскате минанската правонатота яна: () калектична на стала са стала са стала са стала са стала са стала с
Windows 7 Professional 32bit 24 June 2020, 21:40	Nelcos activy ÷	HACK.exe PEI2 constable (BLI) Into BICRA, for ME Windows trajor sector deader lader pacelle stader	ме: () караличаскотородивалика яко: () раскатачных картипараметотов яко: () котородитского карализация () котородитского картизаном
Windows 7 Professional 32bit 24 June 2020, 16:36	Noiches activity	HOX.co: PE2 nextable (20) Inte HEDR, in VE Wedves solar tagin lankt dader lander panale	исе () разбитивоскутотусковатана 9411 () бискатагчиски поставарометотив 94036 () раторизани биската составарожетотив

Fig 3. Website any.run

Malware object is taken from the website https://any.run/. This website provides a lot of malware that we can get. The hack.exe malware is then identified early using the fiscal tool as shown in Fig 4.

HashCalc	
Data Format: File	Data: C:\Users\User\Desktop\HACK.exe
П НМАС	Key Format: Key: Text string v
₩D5	dcdf5473945426f372f22cdde5b73d69
🗆 MD4	
🔽 SHA1	5a6c49fdf4466d618367f9b184ed6d80512f21b8
SHA256	
SHA384	
SHA512	
RIPEMD160	4f39040e77222a275f3c2b308bb57218ef2879f1
🗆 PANAMA	
TIGER	
□ MD2	
ADLER32	
CRC32	2dd6d741
□ eDonkey/ eMule	
<u>SlavaSo</u> ft	Calculate Close Help

Fig 4. MD5 Malware hack.exe

Referring to Figure 4, it can be seen that the malware has a value of MD5 (Message-Digest algorithm 5) dcdf5473945426f372f22cdde5b73d69. The MD5 value is to ensure that the file is the same file and there are no changes in the contents of the file.

TABLE II

HACK.EXE MALWARE INFORMATION

HACK.exe
DCDF5473945426F372F22CDDE5B73D69
2,018 KB
Executable

2. Dynamic Analysis

A. Virtual Machines

The operating system the virtual box using windows 7, then for memory that is used 3040 MB and uses 1 processor with 32 GB of storage. Settings on the network use NAT because the network will make it safe when researching because it will not be sent directly to a physical computer but must go through a firewall first.

B. Setting Up Virtual Network

ApateDNS which has been installed on virtual then click the start server button as in Fig 5 the current localhost ip address becomes 127.0.0.1.

Time	Domain Requested	DNS Returned
+] Using +] DNS s +] Sendi	npting to find DWS by DHCP or Static DNS. g IP address 10.0.2.2 for DWS Reply. set to 127.0.0.1 on Intel(0) PRO/1000 HT Desk ing valid DWS response of first request. er started at 01:01:50 successfully. Reply IP (Default: Current Gatway/DNS):	
DNC I	Reply IP (Derault: Current Gatway/DNS):	Start Serve

Fig 5. ApateDNS

Referring to Figure 5, the process of running an application that will always reply using ip 10.0.2.2 which causes the computer to appear as if it is connected to the internet.

C. Starting process explorer

This stage uses version 3.53 of the process monitor tools. This application has a feature to view all activities running on the computer. Referring to Fig 6, the process monitor tool can filter all processes running on the computer.

Architecture 🔹 is	•	•	then Include	ł.
Reset		Add	Remo	ve
Column	Relation	Value	Action	
V 📀 Process Name	is	HACK.exe	Include	
V 😵 Process Name	is	Procmon.exe	Exclude	
V 😵 Process Name	is	Procexp.exe	Exclude	
Process Name	is	Autoruns.exe	Exclude	
V 😵 Process Name	is	Procmon64.exe	Exclude	
Process Name	is III	Procexn64 exe	Exclude	

Fig 6. Filter Process Monitoring

Process filter on Fig 6 displayed only hack.exe malware to make it easier to perform analysis. Perform filter by looking at the process name of all malware activities so that we can see it as in Fig 7.

le Edit Event Filter Tools O	ptions Help	
🍃 🔜 💸 🕸 🖾 🗢 🛆 🐵	E 🗛 📕 🌋 🗟 🗸	
Time of Day Process	Name PID Operation	Path
23:03:01,0546110 ERHACK.		
23:03:01,0546250 PMACK.	exe 328 🌌 Thread Create	
23:03:01,1001545 E HACK.	sxe 328 🏹 Load Image	C:\Users\User\Desktop\HACK.exe
23:03:01,1002874 E HACK.		C:\Windows\System32\ntdl.dll
23:03:01,1003713 E HACK.	exe 328 🏹 Load Image	C:\Windows\SysWOW64\ntdll.dll
23:03:01,1006325 HACK		C:\Windows\Prefetch\HACK.EXE-34459F1A.pf
23:03:01,1007672 HACK.		
23:03:01,1007997 - HACK.		C:\Windows\Prefetch\HACK.EXE-34459F1A.pf
23:03:01,1008516 E HACK.		C:\Windows\Prefetch\HACK.EXE-34459F1A.pf
23:03:01,1083046 I HACK.	exe 328 🛃 CloseFile	C:\Windows\Prefetch\HACK.EXE-34459F1A.pf
23:03:01,1084700 E HACK.	exe 328 🛃 Create File	D:
23:03:01,1085513 E HACK.	exe 328 🛃 QueryInformatio	onVolume D:
23:03:01,1086251 - HACK.	exe 328 🛃 Create File	C:
23:03:01,1086645 - HACK.	exe 328 🛃 QueryInformatio	
23:03:01,1086920 - HACK.	exe 328 🛃 File SystemCont	trol C:
23:03:01,1132993 E HACK.	sxe 328 🛃 Create File	C:\Users
23:03:01,1133483 E HACK.		
23:03:01,1133756 E HACK.	exe 328 🛃 Query File Intern	alInformationFile C:\Users
23:03:01,1134061 E HACK.	exe 328 🛃 File System Cont	trol C:\Users
23:03:01,1134593 - HACK.	exe 328 🛃 Close File	C:\Users
23:03:01,1136119 - HACK.		C:\Users\User
23:03:01,1136503 E HACK.	exe 328 🛃 Set Basic Inform	ationFile C:\Users\User
23:03:01,1136717 E HACK.	sxe 328 🔜 Query File Intern	alInformationFile C:\Users\User
23:03:01,1136957 E HACK.		trol C:\Users\User
23:03:01,1137346 HACK		C:\Users\User
23:03:01,1138606 E HACK.		C:\Users\User\AppData
23:03:01,1138969 HACK	exe 328 🔜 Set Basic Inform	ationFile C:\Users\User\AppData
23:03:01.1139172 HACK	exe 328 🔜 Query File Intern	alInformationFile C:\Users\User\AppData
23:03:01,1139388 E HACK.	exe 328 🔜 File System Cont	trol C:\Users\User\AppData
23:03:01,1139571 E HACK.		C:\Users\User\AppData
23:03:01,1140745 E HACK.		C:\Users\User\AppData\Local
23:03:01,1141620 E HACK.		
23:03:01,1141827 E HACK.	exe 328 🛃 Query File Intern	alInformationFile C:\Users\User\AppData\Local

Fig 7. Process monitor hack.exe malware

Referring to Fig 7, hack.exe malware is all activities performed by malware. The malware performs many activities such as reading files, creating files, connecting, closing files, and so on. We can pay attention to the activities carried out by each step that is carried out by the malware. In Fig 7 we can see that the malware creates files, sets basic information files, controls file systems, and closes files in each file directory.

2		
🎒 Process Monitor - C:\Users\User\Desktop	\Logfile.PML	
File Edit Event Filter Tools Options	Help	
🖻 🖬 💸 🕸 🖾 😽 🗟	A 📕 🎎 🗟 🌉 🕿 🗷	
Time of Day Process Name	PID Operation	Path
23:03:12,9005030 🗰 HACK.exe	328 TCP Reconnect	User-PC:49176 -> 24.146.133.195.in-addr.arpa.http
23:03:18,8988601 💽 HACK.exe	328 🔬 TCP Reconnect	User-PC:49176 -> 24.146.133.195.in-addr.arpa.http
23:03:33,9457168 📰 HACK.exe	328 👗 TCP Reconnect	User-PC:49177 -> 24.146.133.195.in-addr.arpa:http
23:03:39,9622179 📰 HACK.exe	328 👗 TCP Reconnect	User-PC:49177 -> 24.146.133.195.in-addr.arpa:http
23:03:55,2271787 📰 HACK.exe	328 👗 TCP Reconnect	User-PC:49178 -> 24.146.133.195.in-addr.arpa:http
23:04:01,2427653 EHACK.exe	328 🚠 TCP Reconnect	User-PC:49178 -> 24.146.133.195.in-addr.arpa.http

Fig 8. Process monitor network malware hack.exe

Referring to Fig 8, where it can be seen that the malware is always synchronizing to the ip address 24.146.133.195. Any information that has been obtained, the malware synchronizes on the ip, and for deeper information on the ip address 24.146.133.195 using the Whois Ip Look Tool.

d Tools: DNS Traversal 1	raceroute Vector Trace Ping WHOIS Lookup
Source:	whois.arin.net
IP Address:	24.146.133.195
Name:	00L-CPE-YNKRNY-24-146-128-0-20
Handle:	NET-24-146-128-0-2
Registration Date:	9/8/15
Range:	24.146.128.0-24.146.143.255
	Optimum Online (Cablevision Systems)
Customer Handle:	C05896173
Address:	111 New South Road
City:	Hicksville
State/Province:	NY
Postal Code:	11801
Country:	United States
Name Servers	

Fig 9. Whois Ip Look Tool ip address 24.146.133.195

Fig 9 can display information ip address 24.146.133.195 has the name OOL-CPE-YNKRNY-24-146-128-0-20, country United States, and city ip address 24.146.133.195 Hicksville.

3. Memory Forensic

Forensic memory analysis using volatility tools. This analysis process will display the processes running on the memory and the connections used.

C:\Windows\system32\cmd.ex	,					
0xfffffa80042b1060	svchost.exe	280	452	16	449	0
0xfffffa80042b8b30	svchost.exe	724	452	14	382	ŏ
0xfffffa8003d013d0	dwm.exe	1128	864	-14	70	1
0xfffffa8004330b30	explorer.exe	1144	1116	36	952	
0xfffffa800433ab30	spoolsv.exe	1180	452	13	277	ធំ
0xfffffa8003f79340	taskhost.exe	1216	452	8	166	$ \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} $
0xfffffa8003fd1340	svchost.exe	1284	452	18	304	Ď
0xfffffa8004029060	VBoxTrav.exe	1392	1144	13	142	ĭ
0xfffffa8003f35060	iusched.exe	1456	1400	6	223	1
0xfffffa80041082d0	svchost.exe	1604	452	22	320	Ó
0xfffffa8004499060		1476	1200	25	103	ŏ
0xfffffa8004453870	GoogleCrashHan	1508	1200	22 5 5	90	ŏ
0xfffffa8003c23750	SearchIndexer.	1908	452	12	729	ă
0xfffffa80045ce060	wmpnetwk.exe	2100	452	13	441	ă
0xfffffa8004683570	svchost.exe	2408	452	10	343	й
0xfffffa8004735b30	firefox.exe	2156	1144	ŏ-		0 0 1 0
0xfffffa80044c3060	sychost.exe	1848	452	13	339	ด้
0xfffffa8002540b30	wuauclt.exe	1272	920	- 3	88	ĭ
0xfffffa8002782060	taskeng.exe	3444	920	3 5 4	87	$1 \\ 0$
0xfffffa80024b8060	GoogleUpdate.e	3940	3444	Å.	125	Ŏ
0xfffffa80046bc680	audiodq.exe	3608	744		131	Ŏ
0xfffffa8002c1a060	apateDNS.exe	2616	1144	ă	280	ĭ
0xfffffa8003447730		2028	580	Š	115	ดิ
0xfffffa8002642b30		904	1144	6 8 5 3	104	1 0 1 1 0
Øxfffffa800265eb30		2780	904	11	183	î
0xfffffa80026b7060	WmiPrvSF.exe	3744	580	-7	116	ā
0xfffffa80046ce060	DumpIt.exe	2664	1144	Ż	45	ī
0xfffffa80046c9060		3440	368	2	54	ĩ
0xfffffa8002685820	HACK.exe	328	1144	8	230	1
0xfffffa8002575130	SearchProtocol	2564	1908	8	323	Ø
0xfffffa800258ab30	SearchFilterHo	3048	1908	5	101	Ō

C:\Users\User\Desktop\volatility_2.6_win64_standalone>

Fig 10 Volatility pslist process

Fig 10is a command to display all processes running on the computer using the command volatility_2.6_win64_standalone.exe pslist -f USER-PC-20201001-060252.raw -profile = Win7SP1x64. Volatility executes the command and displays all processes traveling on the computer. Hack.exe malware appears to be running in the process and running on PID 328.

:::135 0.0.0.0:49152 :::49152 0.0.0.0:49152 0.0.0.0:49156 -:0 -:0		LISIENING LISTENING LISTENING LISTENING LISTENING CLOSED fff:6091:4:80fa:ff		svchost.exe wininit.exe wininit.exe wininit.exe lsass.exe System 2100	wmpnetwk.exe
10.0.2.15:49166 10.0.2.15:49169 10.0.2.15:49176 10.0.2.15:49167	195.133.146.24:4 195.133.146.24:4 195.133.146.24:8 195.133.146.24:4 195.133.146.24:4	9168 CLOSED Ø SYN_SENT	33816606 0 328 33816606	?A7♥???? HACK.exe	
10.0.2.13.9.107 -:0 0.0.0.0:3702 :::3702 0.0.0.0:0 :::0 0.0.0.0:5012 0.0.0:50013	38eb:c04:80fa:ff -:- -:- -:- -:- -:- -:- -:-	ff:80dc:f803:80fa:			2020-10-01 05:47: 2020-10-01 05:47: 2020-10-01 05:46: 2020-10-01 05:46: 2020-10-01 05:46: 2020-10-01 05:46: 2020-10-01 05:46: 2020-10-01 05:46:
0.0.0.030013 :::50013 ::1:1900 10.0.2.15:1900 10.0.2.15:137 0.0.0.0.49153 :::49153 0.0.0.0.49153	*:* *:* *:* 0.0.0.0:0 :::0 0.0.0.0:0	LISTENING LISTENING LISTENING	1604 1604 1604 1604 4 744 744 744	svchost.exe svchost.exe svchost.exe svchost.exe System svchost.exe svchost.exe svchost.exe	2020-10-01 03:46: 2020-10-01 05:46: 2020-10-01 05:46: 2020-10-01 05:46: 2020-10-01 05:46:

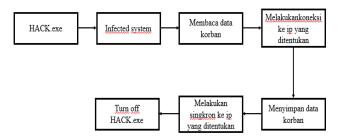
Fig 11 Netscan volatility process

Referring to Fig 11 by using the command volatility_2.6_win64_standalone.exe netscan –f USER-PC-20201001-060252.raw –profile = Win7SP1x64, all the connections that interact with the computer are displayed. Hack.exe malware is seen interacting with the ip address 195.133.146.42 and trying to synchronize the intended ip. It can be seen that there is a difference in Figure 11 and Figure 8, where the ip recorded on the inverted ip volatility is not like in Fig 8, the ip recorded is 24,146,133,195.

	top\volatility_2.6_v ion Volatility Frame		tility_2.6_win64_standal
Process(V)	ImageBase	Name	Result
0xfffffa8002685820	0x000000001360000	HACK.exe	OK: executable.328.exe

C:\Users\User\Desktop\volatility_2.6_win64_standalone>

Fig 12. Dump file process


Referring to Fig 12 is the dump file process using the volatility_2.6_win64_standalone.exe command procdump – p 328 –D dumpfile –f USER-PC-20201001-060252.raw – profile = Win7SP1x64 after running the data is dumped so that it becomes an executable file which later The file can be uploaded to virustotal.com as shown in Fig13.

29 169 8 * Cormuthy @	() 29 engines detected this file		e X
	7albol3595c7977468es543cca892aF3446507aDdod6652ala00940689b eecuade.201ee peek		197 MB 2020-10-01 07:17:20 UIC Star Size 8 days ago
DETECTION	DETAILS BEHAVIOR COMMUNITY		
Ad-Aware	Gen:Variant.Ser.Zusy.2962	ALYac	GentVariant.Ser.Zusy.2962
Antiy-AVL	Irojan/Win32.ParasiteStealer.a	SecureAge APEX	() Malicious
Arcabit	Irojan.Ser.Zusy.D892	Avest	() Wn32/PWSX-gen [Ir]
AVG	() Win32/PWSX-gen[Ir]	Avira (no cloud)	HEURIAGEN 1130810
BitDefender	Gen/Variant.Ser:2usy.2962	BitDefenderTheta	Gen/MLZexaF.34282.IrW@aSYCRem
ClamAV	() Win.Malware.Fugrafa-7779079-0	CrowdStrike Falcon	() Wnimalicious_confidence_100% (D)
Cybereason	Malicious.5dc698	Cynet	() Malicious (score: 100)
Elastic	() Malicious (high Confidence)	Emsisoft	() Gent/Variant.Ser.Zusy.2962 (8)
eScan	Gen:Variant.Ser.Zusy.2962	ESET-NOD32	A Variant Of Win32/SpyAgent/PWS
F-Secure	Heuristic:HEURAGEN.1130810	Fortinet	W32/Agent.PWSitr.pws
GData	 Gen/Variant.Ser.Zusy.2962 	Malwarebytes	Spyware Nexus

Fig 13. Virustotal analysis

Refer to Fig 13 after being analyzed by virustotal.com, it turns out that the malware is a trojan and can be detected by 29 anti-viruses. Halis virustotal.com analyzes that files entered on the website are a variant of malware.

Malware workflow

Fig 14. Hack.exe malware workflow

Referring to Fig 14 shows how the hack.exe malware works on the system. Malware that has been run is infected with the system. The malware then reads the necessary data, such as the system used by the computer, personal data on the victim's computer, and the hardware used by the victim, which will be stored by the malware. After the data is stored then synchronizes on the ip 24.146.133.195. Malware will continue to run the process shown in Figure 14 even though the victim's computer has no connection.

Prevention

malware in particular Hack.exe malware can be prevented by the following things:

- 1. Be on the lookout for all email submissions from unknown sources
- 2. Files files from unknown sources not to download or run
- 3. Install and activate the antivirus which can detect hack.exe malware

Recovery of systems infected with hack.exe malware

victims who have been infected by hack.exe can do the following things:

- 1. Install an antivirus that can detect hack.exe malware as shown in Figure 13
- 2. Performs a scan on the computer using an antivirus
- 3. Users must change their user name and password for social media or anything

V. CONCLUSION

This study, entitled "Hack.Exe Malware Analysis with Reverse Engineering and Memory Forensic Methods" is based on the research that has been done, it can be concluded as follows:

1. The malware analysis process is carried out using dynamic methods, riverse engineering, and memory forensics. The malware analysis process begins with the installation of a virtual machine, virtual network settings, process monitor filters, diassemblers, and memory forensics.

2. The way the hack.exe malware works is to infect the system, read data and store the data needed. Synchronize with the ip address 24.146.133.195.

Thank-you note

The author is grateful to Allah SWT, with his grace and grace this research can be completed. The author would like to thank the supervisors who always guided patiently in carrying out this writing and research, to parents with all their support and to related parties who have helped the author in completing this research.

ACKNOWLEDGEMENT

The author is grateful to Allah SWT, with his grace and grace this research can be completed. The author would like to thank the supervisors who always guided patiently in carrying out this writing and research, to parents with all their support and to related parties who have helped the author in completing this research.

REFERENCES

- [1] R. Adenansi and L. A. Novarina, "MALWARE DYNAMIC," *JOEICT (Jurnal of Education and Information Communication Technology)*, pp. 37-43, 2017.
- [2] Lintasarta, "http://blog.lintasarta.net/article/infografistips-mengamankan-bisnis-anda-dari-serangan-siber/," kamis april 2020. [Online]. Available: http://blog.lintasarta.net/.
- [3] İ. Kara and M. Aydos, "Üçüncü Nesil Cerber Ransomware Zararlı Yazılımının Statik ve Dinamik Analizi Static and Dynamic Analysis of Third Generation Cerber Ransomware," *International Congress on Big Data, Deep Learning and Fighting Cyber Terrorism*, pp. 12-17, 2018.
- [4] A. P. Aldya, N. Widiyasono and T. P. Setia, "Reverse Engineering untuk Analisis Malware Remote Access Trojan," *JEPIN (Jurnal Edukasi dan Penelitian Informatika)*, pp. 40-45, 2019.
- [5] A. H. Muhammad, B. Sugiantoro and A. Luthfi, "METODE KLASIFIKASI DAN ANALISIS KARAKTERISTIK MALWARE MENGGUNAKAN KONSEP ONTOLOGI," *TEKNOMATIKA*, pp. 16-28, 2017.
- [6] D. Schwarz and M. Mesa, "https://www.proofpoint.com/us/blog/threatinsight/zloader-loads-again-new-zloader-variantreturns," rabu mei 2020. [Online]. Available: https://www.proofpoint.com/.
- [7] P. B. Gadgil and S. Nagpure, "ANALYSIS OF ADVANCED VOLATILE THREATS USING MEMORY FORENSICS," CONFERENCE ON TECHNOLOGIES FOR FUTURE CITIES (CTFC), 2019.
- [8] H. A. Nugroho and Y. Prayudi, "PENGGUNAAN TEKNIK REVERSE ENGINEERING PADA MALWARE ANALYSIS UNTUK IDENTIFIKASI SERANGAN MALWARE," STMIK Dipanegara Makasar, pp. 1-8, 2015.
- [9] N. Zalavadiya and P. Sharma, "A Methodology of Malware Analysis, Tools and Technique for windows platform – RAT Analysis," *International Journal of Innovative Research in Computer and Communication Engineering*, pp. 5042-5054, 2017.
- [10] D. Uppal, V. Mehra and V. Verma, "Basic survey on MalwareAnalysis, Tools and Techniques," *International Journal on Computational Sciences & Applications (IJCSA)*, pp. 103-112, 2014.
- [11] C. Rathnayaka and A. Jamdagni, "An Efficient Approach for Advanced Malware Analysis using Memory Forensic Technique," *IEEE Trustcom/BigDataSE/ICESS*, pp. 1145-1150, 2017.

- [12] F. Bahtiar, N. Widiyasono and A. P. Aldya, "Memory Volatile Forensik Untuk Deteksi Malware," *JuTISI*, pp. 242-253, 2018.
- [13] R. Syaputra and S., "Studi Literatur Analisis Malware Menggunakan Metode," Jurnal Jaringan Komputer dan Keamanan, pp. 14-24, 2020.
- [14] D. R. Septani, N. Widiyasono and H. Mubarok, "Investigasi Serangan Malware Njrat Pada PC," *Jurnal Edukasi dan Penelitian Informatika (JEPIN, pp. 123-128, 2016.*
- [15] B. Sarmun, "https://suaramerdekasolo.com/2019/08/30/waspadaihese-ransomware/," Jumat Agustus 2019. [Online]. Available: https://suaramerdekasolo.com.
- [16] S. Y. S , y. Prayudi and I. Riadi, "Implementation of Malware Analysis using Static and Dynamic Analysis Method," *International Journal of Computer Applications*, pp. 11-15, 2015.
- [17] S. Megira, A. R. Pangesti and F. W. Wibowo, "Malware Analysis and Detection Using Reverse Engineering Technique," *IC-ELINVO*, p. 12, 2018.
- [18] T. A. Cahyanto, V. Wahanggara and D. Ramadana, "Analisis dan Deteksi Malware Menggunakan Metode Malware," JUSTINDO, Jurnal Sistem & Teknologi Informasi Indonesia, pp. 19-30, 2017.
- [19] S. Almarri and D. P. Sant, "Optimised Malware Detection in Digital Forensics," *International Journal* of Network Security & Its Applications (IJNSA), pp. 1-15, 14.
- [20] Microsoft, "Windows Dev Center," 2018. [Online]. Available: https://msdn.microsoft.com/enus/library/windows/desktop/ms684175(v=vs.85).aspx . [Accessed 2 Juli 2018].