
P-ISSN : 2579-597x, E-ISSN : 2579-5988

International Journal of Engineering and Emerging Technology, Vol.6, No.2, July – December 2021 80

Abstract Theta-Star is an efficient algorithm that can be used to find an optimal path in a map with better performance compared

to the A-Star algorithm. Combining the Theta-Star with Hierarchical Pathfinding further enhances its performance by abstracting a

large map into several clusters. What this combination lacks is the capability to handle a dynamic element in the map. Without that

capability, the agent could potentially collide with elements in the map that is undesirable in certain conditions, while adding that

capability might reduce the pathfinding algorithm's performance. The proposed algorithm aims to provide the capability to handle

dynamic elements without severe negative impact on the performance of the algorithm. The effectiveness of the proposed

algorithm is verified in terms of execution time, number of nodes explored, final path length, and the number of collisions that

occurred.

Index Terms—Artificial Intelligence, Dynamic Map, Grid-Based, Hierarchical Pathfinding, Theta-Star.

I. INTRODUCTION1

athfinding is one of the basic yet essential tasks for

Artificial Intelligence. Pathfinding algorithms have many

uses, such as navigation applications, AI in a game

application, or even autonomous driving. There are several

algorithms for finding the optimum path to travel from one

position to another, each with its advantages and

disadvantages. Most of the current algorithm, however,

primarily deals with a static map. Meanwhile, a specific

condition requires a pathfinding algorithm to consider

dynamic elements. The navigation application may require

viewing a different route due to changing traffic. AI may be

required to consider a potentially dangerous area, and an

autonomous car will need to consider other cars' locations.

Therefore, adding the capability to navigate a dynamic map

to a pathfinding algorithm is important to allow the

algorithm to be applied in more challenging conditions.

Many researchers have continuously made improvements

to create a fast and accurate pathfinding algorithm. They

were starting from the simplest one, which is Dijkstra's

algorithm, also known as the Shortest Path First (SPF)

algorithm. A few improvements were made into what

becomes the A-Star (A*) search algorithm, where a heuristic

function is added to determine the optimal path. From these

algorithms, another improvement was made to make the

algorithm suitable for many nodes, which is then called the

Hierarchical Pathfinding (HP) algorithm.

Based on the comparison between several pathfinding

algorithms, the algorithm which has a good overall

performance is the Hierarchical Pathfinding Theta-Star

algorithm, which can calculate the optimum path to get from

one point to another with better memory usage while

maintaining the efficiency of the resulting path [1]. The

algorithm works by combining the characteristics of the

Hierarchical Pathfinding algorithm and the Theta-Star

algorithm. The Hierarchical Pathfinding algorithm provides

the capabilities to process a large number of nodes by

separating them into several smaller grids. Some of the grids

partitioned from the Hierarchical Pathfinding algorithm

already offer the optimal path, which the Theta-Star

algorithm will disregard. Then, the grids that do not yet have

an optimal path will be further processed by the Theta-Star

algorithm. This method allows the Hierarchical Pathfinding

Theta-Star algorithm to provide an optimum path for a large

grid with the minimum number of processed nodes.

While the Hierarchical Pathfinding Theta-Star algorithm

provides a good result for a static map, improvements can

still be made to enable the Hierarchical Pathfinding Theta-

1Computer Science Department, BINUS Graduate Program – Master of Computer Science, Bina Nusantara

University, Jakarta 11480, Indonesia
2Computer Engineering Department, Faculty of Engineering, Bina Nusantara University, Jakarta 11480, Indonesia

Dynamic Map Pathfinding Using Hierarchical

Pathfinding Theta-Star (HPT*) Algorithm

Irfan Darwin1, Suryadiputra Liawatimena1,2

P

Star algorithm to be used on a dynamically changing map. A

dynamically changing map is defined as a map containing

elements such as moving obstacles or, more generally, a map

in which a path could become invalid at one time and valid

at another. The main contribution of this paper is expected

to be an algorithm that allows the Hierarchical Theta-Star

algorithm to be used on a dynamic environment. Meanwhile,

the performance of the algorithm should not be significantly

worse than the original algorithm. Additionally, the paper

also aims to provide additional insight by implementing the

algorithm on a hexagon-grid instead of the usual square-

grid.

II. LITERATURE REVIEW

A. Static Map Pathfinding

Pathfinding algorithm was developed as early as 1956,

starting from Djikstra's algorithm, and has continued to

create until now. Most algorithms primarily deal with a

static map. A map is considered static if it contains only

stationary obstacles and does not change while the agent

deliberates which path is optimum [2]. This condition allows

the pathfinding algorithm to plan the optimal path from the

starting point to the destination only once and ensures that

once found, the path will remain valid.

Algorithms such as the A-Star provides a simple and

efficient way to calculate the optimum path [3]. While other

algorithms, such as the Theta-Star, improves the execution

time and memory usage of the algorithm by optimizing the

number of nodes that needed to be visited to determine the

optimum path [4]. Further improvement to the execution

time was also provided by the Lazy Theta-Star [5]. While

there are some improvements such as the Cluster Theta-Star

(C-Theta*) algorithm improves the Theta-Star algorithm's

performance by dividing the map into several non-uniform

clusters [6]. Other variation includes the combination of the

Theta-Star with a hybrid A Star algorithm [7], using a

visibility graph as a pathfinding method [8], and another

variation that aims to improve the line-of-sight check's

efficiency called the Batch-Theta-Star [9].

The accuracy of the path produced by both the A-Star

and Theta-Star algorithm is proven to optimal given an

accurate heuristic function. To determine whether the

heuristic function used in the pathfinding algorithm is

accurate, one of the criteria required is for the heuristic

function to be admissible. For a heuristic function to be

admissible, its estimated cost of reaching the destination

must never exceed the actual cost [10]. Admissibility is

more comfortable to achieve on a static map since the initial

cost estimate will not change over time. Therefore, one of

the improvements that can be made to both algorithms is by

adding the algorithm's capability to provide an accurate path

in a dynamic map.

B. Dynamic Map Pathfinding

One of the pathfinding algorithms that can provide an

accurate result in a dynamic environment is the D-Star [11].

The D Star classifies the dynamic environment into several

categories: a known dynamic environment, a partially known

dynamic environment, and a totally unknown dynamic

environment based on the observability of the environment.

A known dynamic environment means that information such

as the path of the moving obstacle is known. While a totally

unknown dynamic environment means that only very limited

information is initially provided, requiring the agent to refine

its path on the go.

The D-Star algorithm provides the basis which could be

used to allow a pathfinding algorithm to be used on a

dynamic map. In a dynamic map, the agent should also take

into account the movement of an obstacle to ensure no

collision will occur while keeping the path as short as

possible. A specific path in a dynamic map might be shorter

than another but has a high chance of causing a collision

between the agent and an obstacle. At the same time, a

longer path might provide a much safer route to the

destination cell. A dynamic map pathfinding algorithm

should be able to choose which path is optimum.

Based on the environment's observability, the behavior of

the algorithm itself should change to be able to perform

optimally. This algorithm could be further improved by

increasing the algorithm's performance when used in a larger

known dynamic environment. This improvement can also be

applied to a partially known dynamic environment, as long

as one of the known information is the map's size. While for

a totally unknown dynamic environment, this improvement

might be challenging to achieve.

There are also other dynamic map pathfinding algorithms,

most of them are based on the A-Star algorithm. Such as the

Hierarchical Pathfinding Lifelong Planning A Star

(HPLPA*) are algorithms that combine several algorithms

to enable an A-Star algorithm to be implemented in a

dynamic map [12]. Another dynamic pathfinding algorithm

such as Dynamic Hierarchical Pathfinding A Star (DHPA*)

[13], and there is also research on optimizing the graph to

improve the performance of the algorithm used [14].

C. Hierarchical Pathfinding

Hierarchical Pathfinding provides a method to allow a

pathfinding algorithm to deal with a large environment. By

dividing a large environment into several clusters, a

pathfinding algorithm can then be used locally on each

cluster to find the optimum path. This method works

similarly to a command structure, where the highest-level

entity will decide the general strategy and delegate its

implementation to a lower-level entity. The delegation will

continue until it reaches the lowest level entity that will

perform the actual action, determining the optimal path.

Hierarchical Pathfinding has been applied to both the A-

Star and Theta-Star algorithms. Based on the test

performed, the Hierarchical Pathfinding method combined

with the Theta-Star algorithm is proven to be more efficient

than Hierarchical Pathfinding combined with the A-Star

P-ISSN : 2579-597x, E-ISSN : 2579-5988

International Journal of Engineering and Emerging Technology, Vol.6, No.2, July – December 2021 82

algorithm [15]. The variables compared to determine the

performance of both algorithms are path lengths, number of

node visits, and nodes in memory. Since both algorithms

used are static pathfinding algorithms, improvements can be

made to allow a combination of the Hierarchical Pathfinding

method with dynamic map pathfinding. Precisely which

algorithm will be chosen and combined will impact the

performance and its ability to handle certain factors such as

the environment's observability.

There is a constraint when combining the Hierarchical

Pathfinding method with a dynamic map pathfinding

algorithm. The constraint is that the agent's information

should include the structure of the map that the agent will

traverse. Using that information, the agent will be able to

split the map into several smaller clusters. However, a

dynamic map with a totally unknown dynamic environment

classification cannot implement the Hierarchical Pathfinding

method since the agent has little or no information about the

map to split it into smaller clusters effectively.

III. RESEARCH METHODOLOGY

A. Benchmark

The experiments are done using the benchmark grids from

the Dragon Age computer game [16]. The grid is provided

in a text file format, which will be interpreted by the

simulator to form the environment. Each character

represents a different type of grid.

As shown in Fig. 1, the grids provided have several

characters used to identify each cell's type in the grid. The

experiments are conducted while keeping the original

definition for the "." character, which represents a walkable

cell. The changes made are on the definition for the "T"

character. Initially, the "T" represents trees which is

impassable. In this experiment, the "T" will represent a

trapped cell, the grid's dynamic part. A trap cell will

continuously switch between the "off" and "on" states.

While the trap is in the "on" state, the agent moving to that

cell will count as a collision.

Apart from the text representation of the map, a total of

130 scenarios are also provided benchmarking purpose.

These scenarios place a different starting and destination

point for the agent. By executing each of the pathfinding

algorithm using the same map and scenario, a comparison

can be made to determine the efficiency of each algorithm.

 Fig. 2 displays the text representation of several scenarios

from the 130 total scenarios for the map. The text is

formatted in a certain pattern, the leftmost value indicates

which bucket the scenario belongs to. Each bucket contains

10 scenarios which means there is a total of 13 buckets for

this set of scenarios. The bucket value serves to categorize

the scenario based on its complexity, with more complex

scenario having a higher bucket value. The second value

indicates which map this scenario is intended for. The third

and fourth value indicates the width and height dimension of

the map, respectively. The fifth and sixth value indicates the

coordinate of the starting point, while the seventh and eight

value indicates the coordinate of the destination point.

Finally, the ninth value indicates the optimal length of the

scenario, calculated by the square root of the diagonal cost

of the distance between the starting and destination point

given in the scenario.

B. Map Representation

In order to visualize the path formed by each of the

pathfinding algorithm, the application developed for the

simulation will convert the text representation into an image

representation. While originally represented by a square

grid, the application for this experiment will use a hexagon

grid. A different color will be used to differentiate one type

of cell from the other, with a blue-colored hexagon

representing the starting position of the agent and a dark

green-colored hexagon representing the destination that the

agent needs to reach.

Fig. 1. Text Representation of the Benchmark Grid Used in the Experiment

(Partial)

Fig. 2. Text Representation of the Benchmark Scenario Used in the

Experiment (Partial)

The specific map used in the experiment is the arena map.

There are two types of terrains in this map, the "." and "T"

cell. In the application used, the "." cell will be represented

by a green-colored hexagon which is walkable, while the "T"

cell will be represented by a red-colored hexagon which

could cause a collision if stepped on by the agent at a

particular time.

C. Proposed Algorithms

The following pseudocode describe the general idea about

the initial idea to implement the capability to traverse a

dynamic map in a hierarchical pathfinding algorithm. The

first step is to convert the initial input, which is given in text

form, into a graph format which the algorithm will use to

plan the path. After that, following the procedure for the

Hierarchical Pathfinding algorithm, the graph will be split

into clusters. During the cluster creation, the cluster will be

categorized into a dynamic cluster if it contains a dynamic

element and a static cluster otherwise.

Based on the cluster category, the appropriate pathfinding

algorithm will be used. A dynamic cluster will be traversed

using a dynamic pathfinding algorithm, while a static cluster

will be traversed using a static pathfinding algorithm. This

setup aims to minimize the performance impact of using the

more complicated dynamic pathfinding algorithm by only

using the algorithm when it is necessary.

The algorithm used for the dynamic traversal is based on

the Theta-Star algorithm. The modification made to the

algorithm is located on the visibility checking part of the

algorithm. Originally, the algorithm would only consider

static obstacle as something which could block visibility

between two cells.

The modified algorithm adds another condition

(highlighted in green on Fig. 5) that the algorithm also

considers a dynamic obstacle as something that can block

visibility if the dynamic obstacle is in an active condition.

Otherwise, the cell is treated as a walkable cell since an

inactive trap cell will not count as a collision.

IV. RESULT AND DISCUSSION

Six pathfinding algorithms are considered during the

experiment. A-Star algorithm (A*), Theta-Star algorithm

(Theta*), Modified Theta-Star algorithm (Mod Theta*), and

the Hierarchical counterpart of the three algorithms (HPA*,

HPT*, and Mod HPT*). Each of the pathfinding algorithm

is executed to provide the return path for each one of the

130 scenarios provided with the map. The result of each

execution is then stored and then further processed to

determine the general performance of the algorithm on this

particular map under varying scenarios. The following figure

illustrates the different path produced by Theta Star

Algorithm compared to the Modified Theta Star Algorithm

when executed on one of the 130 scenarios.

Fig. 6 shows the return path comparison between the

Theta-Star algorithm and the Modified Theta-Star

algorithm. The yellow-colored cell indicates the path which

the algorithm produces. The Theta Star Algorithm creates a

Fig. 3. Original Square-Grid Representation (Left) and Hexagon-Grid

Representation Used in the Experiment (Right)

Fig. 4. Pseudocode for the Modified Pathfinding Algorithm

Fig. 5. Pseudocode for the Modified Visibility Check Algorithm

Fig. 6. Return Path Theta-Star (Left) and Modified Theta-Star (Right)

P-ISSN : 2579-597x, E-ISSN : 2579-5988

International Journal of Engineering and Emerging Technology, Vol.6, No.2, July – December 2021 84

path that passes through the red-colored grid, which results

in some collision. Meanwhile the Modified Theta Star

creates a longer path which evades the red-colored grid,

choosing to minimize the number of collisions.

The total result for the execution time, path length, and

number of visited nodes are averaged, while number of

collisions is summed for the comparison between each of the

pathfinding algorithm. Execution time indicates how long

the algorithm requires to find the return path and is counted

in milliseconds (ms), meanwhile explored node indicates

how many cells the pathfinding algorithm need to consider

before finding the final return path. Return path length

indicates how many steps the agent needs to take to reach

the destination, meanwhile collision count indicates how

many times the agent steps on an active trap cell. The

following figures compares the execution result of each of

the six algorithms.

Fig. 7 shows the execution time comparison between the

six pathfinding algorithms. The average execution time for

the A Star algorithm is lower compared to the Theta Star

algorithm and the Modified Theta Star algorithm.

Implementing the Hierarchical Pathfinding algorithm

improves the execution time of each of the algorithm. In

comparison, adding the dynamic pathfinding capability to

the Theta algorithm does not negatively impact its execution

time significantly.

Fig. 8 shows the number of explored graph nodes

comparison between the six pathfinding algorithms. The

average number of explored nodes for the A Star algorithm

is higher compared to the Theta Star algorithm and the

Modified Theta Star algorithm. Implementing the

Hierarchical Pathfinding algorithm increases the number of

nodes explored due to the preprocessing needed to split the

map into clusters. In comparison, adding the dynamic

pathfinding capability to the Theta Star algorithm further

increases the number of nodes explored due to the need to

find alternative path that will not cause a collision.

Fig. 9 shows the return path length comparison between

the six pathfinding algorithms. The average path length for

the three algorithms is relatively similar. Implementing the

Hierarchical Pathfinding algorithm increases the length of

the return path for the A Star algorithm due to the lack of

path smoothing on the final hierarchical result. In

comparison, adding the dynamic pathfinding capability to

the Theta Star algorithm also increases the length of the

return path due to the need to find alternative path that will

not cause a collision.

Fig. 10 shows the collision count comparison between the

six pathfinding algorithms. Both the A Star and Theta Star

algorithm has a similar number of collisions. Implementing

the Hierarchical Pathfinding algorithm does not significantly

change the number of collisions. In comparison, adding the

dynamic pathfinding capability to the Theta Star algorithm

successfully reduces the number of collisions that would

otherwise occur.

V. CONCLUSION

Based on the total number of collisions shown in Fig. 10,

the modified Hierarchical Theta Star algorithm can reduce

the number of the collision of the final path in most

scenarios. This result is achieved while maintaining the

efficiency that hierarchical pathfinding provides by

abstracting the map into several clusters, reducing the

Fig. 7. Execution Time Comparison Chart

Fig. 8. Explored Node Comparison Chart

Fig. 10. Collision Count Comparison Chart

Fig. 9. Return Path Length Comparison Chart

number of explored nodes, and reducing execution time as

shown in Fig. 7 – 8. Using the Theta Star algorithm as the

main pathfinding algorithm ensures that the abstraction will

not cause the final path to become significantly longer as

shown in Fig. 9. Based on the result shown from Fig. 7 – 9,

a Hierarchical Theta Star algorithm could be extended to be

able to handle a hexagon grid and dynamic elements without

significant penalty on its performance.

REFERENCES

[1] L. van Elswijk, “Hierarchical Path-Finding Theta*,” pp. 11–13, 2013.

[2] S. J. Russell and P. Norvig, in Artificial intelligence: a modern

approach, Upper Saddle River: Prentice-Hall, 2010, pp. 42–44.

[3] X. Cui and H. Shi, “A*-based Pathfinding in Modern Computer

Games,” International Journal of Computer Science and Network

Security, pp. 125–130, 2011.

[4] K. Daniel, A. Nash, S. Koenig, and A. Felner, “Theta*: Any-Angle

Path Planning on Grids,” Journal of Artificial Intelligence Research,

vol. 39, pp. 533–579, 2010.

[5] A. Nash, S. Koenig, and C. Tovey, “Lazy Theta*: Any-Angle Path

Planning and Path Length Analysis in 3D.,” Proceedings of the AAAI

Conference on Artificial Intelligence, vol. 24, no. 1, 2010.

[6] P. Mendonca and S. Goodwin, “C-Theta*: Cluster Based Path-

Planning on Grids,” 2015 International Conference on Computational

Science and Computational Intelligence (CSCI), 2015.

[7] В. Г. Михалько and І. В. Круш, “Effective pathfinding for four-

wheeled robot based on combining Theta* and hybrid A* algorithms,”

ScienceRise, vol. 7, no. 2 (24), p. 17, 2016.

[8] N. B. Abdul Latip, R. Omar, and S. K. Debnath, “Optimal Path

Planning using Equilateral Spaces Oriented Visibility Graph

Method,” International Journal of Electrical and Computer

Engineering (IJECE), vol. 7, no. 6, p. 3046, 2017.

[9] V.-H. Dang, N. D. Thang, H. H. Viet, and L. A. Tuan, “Batch-Theta*

for path planning to the best goal in a goal set,” Advanced Robotics,

vol. 29, no. 23, pp. 1537–1550, 2015.

[10] R. E. Korf, “Recent Progress in the Design and Analysis of

Admissible Heuristic Functions,” Lecture Notes in Computer Science,

pp. 45–55, 2000.

[11] F. A. Raheem and U. I. Hameed, “Heuristic D* Algorithm Based on

Particle Swarm Optimization for Path Planning of Two-Link Robot

Arm in Dynamic Environment,” Al-Khwarizmi Engineering Journal,

vol. 15, no. 2, pp. 108–123, 2019.

[12] Yan Li, Wenju Zhao, Zhenhua Zhou, and Cai Chen, “Hierarchical

and Dynamic Pathfinding Algorithms in Game Maps,” International

Journal of Advancements in Computing Technology, vol. 5, no. 11,

pp. 87–98, 2013.

[13] A. Kring, A. Champandard, and N. Samarin, “Dhpa* and shpa*:

Efficient hierarchical pathfinding in dynamic and static game worlds,”

Proceedings of the AAAI Conference on Artificial Intelligence and

Interactive Digital Entertainment, vol. 5, no. 1, 2010.

[14] W. Zhu, D. Jia, H. Wan, T. Yang, C. Hu, K. Qin, and X. Cui,

“Waypoint Graph Based Fast Pathfinding in Dynamic Environment,”

International Journal of Distributed Sensor Networks, vol. 11, no. 8,

p. 238727, 2015.

[15] A. Botea, M. Muller, and J. Schaeffer, “Near-optimal hierarchical

pathfinding,” Journal of Game Development, vol. 1, no. 1, pp. 1–30,

2004.

[16] N. R. Sturtevant, “Benchmarks for Grid-Based Pathfinding,” IEEE

Transactions on Computational Intelligence and AI in Games, vol. 4,

no. 2, pp. 144–148, 2012.

