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ABSTRACT 
 

The world’s elderly population is increasing. Thus, in the future, degenerative diseases incidence will 

increase. Therefore, the development of anti-aging agent is required. NADPH oxidase (NOX), especially NOX1, 

has important roles in aging and degenerative diseases. NOX1 activation required interaction between p47phox 

and p22phox subunit. Based on that mechanism, compound that has ability to inhibit p47phox-p22phox complex 

development could become an anti-aging agent. The aim of this study is to find novel NOX1 inhibitors candidate 

from phytochemical database that work via inhibiting p47phox-p22phox complex development. Machine learning-

based screening and molecular docking were used in this study. We screened phytochemicals from the PhytoHub 

database using machine-learning model with random forest method. The active compounds based on machine-

learning-based screening were chosen as ligands for molecular docking.We found 7 compounds that could be 

NOX 1 inhibitor candidates from the machine-learning-based screening. Through blind molecular docking, we 

found that 6 of the 7 compounds were able to bind with the SH3 domain of p47phox. Those 6 compounds are 8,5'-

Diferulic acid, Jaceosidin, Malvidin, Peonidin, Petunidin, and Tryptamine. Jaceosidin and petunidin are able to 

bind with both SH3B domain and polybasic region of p47phox. The conformation changes of both domains are 

required for p47phox activation. Inhibited p47phox could not bind p22phox. Thus, jaceosidin and petunidin might 

work as NOX1 inhibitor via inhibiting p47phox-p22phox complex development. 
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INTRODUCTION 

 

The world is facing increased of aging population. 

Elderly population is predicted to constitute 22% of total 

population in around 40 years. This amount is increased 

from 0.8 billion into 2 billion 
1
.  Therefore, the world will 

facing increased degenerative disease incidence. Based on 

this condition, development of anti-aging agent will be 

required.NADPH oxidase (NOX) is a membrane class 

enzyme that have role in converting NADPH oxidase into 

NADP
+
 and superoxide anion. NOX has seven types 

including NOX 1-5 and DUOX 1&2 anion 
2
. Several studies 

have also found that NOX, especially NOX1, plays role in 

several degenerative diseases progression including 

atherosclerosis, osteoarthritis, Alzheimer’s disease, and 

osteoporosis 
3
 

4
 

5
 

6
. Research also found that mice with 

knockout NOX 1 gene have longer life-span 
7
.   

NOX 1 activation requires translocation of 

cytosolic subunit into membrane and bind with membrane 

subunit. One of important cytosolic subunit is p47phox. 

During NOX1 activation, p47phox will bind with p22phox, 

one of the membrane subunits of NOX1. Inhibiting 

interaction between those subunits are able to prevent NOX 

1 activity 
8
. Research also shown that p22phox NOX 

polymorphism is correlated with speed of aging and risk of 

degenerative disease 
9
. Based on those studies, development 

of NOX1 inhibitor has promising prospect in anti-aging 

field. 

The main concern of drug development is the cost. 

Computational aided drug discovery can aid the process and 

cut the cost 
10

. The Artificial intelligence (AI) technology 

usage can accelerate the process of finding new compounds 

that could be NOX1 inhibitor. One of AI technology that 

have promising role in drug development is machine-

learning. Machine-learning-based screening could be used 

in detecting compound activity toward certain enzyme  
10

. 

Phytochemical or plant-derived molecule could 

become base of development novel drug candidate. 

Therefore, this study aims to find novel NOX inhibitor 

candidate that work via inhibiting p47phox-p22phox 
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complex development. In this study, PhytoHub database 

(https://phytohub.eu/) was used for screening of novel 

NOX1 inhibitor candidate 
11

. The screening was assisted by 

random forest machine-learning then the screening results 

were confirmed by molecular docking. 

MATERIALS AND METHODS 

Machine-learning-Based Screening 

A machine-learning model was made using the 

python programming language. The SMILES structure of 

phytochemical compounds from the PhytoHub database 

were converted into morgan fingerprint and RDKIT 

molecular descriptors 
12

 
13

. The following molecular 

descriptors were used: molecular weight, number of 

hydrogen acceptors, number of hydrogen donors, total polar 

surface area, and partition coefficient. The random forest 

method was used as machine-learning method. The database 

of NOX1 inhibitors was acquired from CheMBL website 

(https://www.ebi.ac.uk/ chembl/). The CheMBL database 

contains 250 compounds that have been already tested on 

NOX1. That database consists of 89 active compounds, 125 

non-active compounds, 2 compounds with non-determined 

activity, and 34 compounds with no information. The 

database was split into an 80% training set and a 20% test 

set. We trained the machine-learning model using the scikit-

learn package 
14

. Ten-fold cross-validation was performed 

to evaluate model quality. The active compounds based on 

machine-learning screening were chosen as ligands for 

molecular docking.  

Ligand Preparation 

Ligands structure were downloaded from the 

PubChem website (National Library of Medicine, Bethesda, 

Maryland, USA) in SDF format. Ligand energy was 

minimized with PyRx 0.8 software with a 200-step mff94 

force field and steepest descent algorithm 
15

. 

Protein Preparation 

Auto-inhibited p47-phox structure (PDB id: 1NG2) 

was downloaded from the Protein Data Bank website 

(RCSB, San Diego, California, USA) 
16

 
17

. Protein was 

cleaned with Biovia Discovery Studio software (Dassault 

Systèmes, Paris, France). The polar hydrogen and Kolmann 

charge were added to the protein with Autodock Tools. 

Protein energy minimization was performed using the Swiss 

PDB Viewer 
18

. 

Docking Procedure 

 

 

 

Vina Wizard program on PyRx 0.8 was used in the docking 

process 
19

 
20

. The docking grid box is made to cover the 

whole protein’s structure. Docking results were downloaded 

in .pdb and visualized using Biovia Discovery Studio 

Visualizer. Inhibitor candidates were assessed based on 

docking profiles and binding affinity. We also docked a 

known ligand (diapocynin) and five non-active compounds 

from the ChEMBL database 
21

.  

Pharmacokinetic Profile Screening 

The pharmacokinetic profile of the compounds were 

screened using the Swiss Admet website 

(http://www.swissadme.ch/) 
22

. The compounds were 

considered good oral drug candidates if they fulfilled 

Lipinski rules of five 
23

. 

 
RESULTS 
Machine-learning-based Screening 

Machine-learning-based screening has 80% total 

accuracy. Active class has 82% accuracy, and non-active 

class has 72% accuracy. The ROC curve shows that active 

and non-active class have 0.92 and 0.91 of area under the 

curve, respectively (Figure 1). After performing 10-fold 

cross-validation, we found no significant score difference 

between all 10 tests (Table 1). So, the model is not 

significantly affected by overfitting. From a total of 2727 

compounds, machine-learning-based screening found 7 

compounds that were detected as active NOX1 inhibitor 

candidates. Those compounds are 8,5'-Diferulic acid, 

Jaceosidin, Malvidin, Peonidin, Petunidin, Sinapic acid-O-

sulfate, and Tryptamine (Figure 2). 

Molecular Docking and Pharmacokinetic Prediction Results 

Through blind docking, we found six of seven 

compounds are able to bind with the SH3 domains of 

p47phox (Figures 3 and 4). These compounds are: 8,5'-

Diferulic acid, Jaceosidin, Malvidin, Peonidin, Petunidin, 

Sinapic, and Tryptamine. SH3 consists of SH3A and SH3B. 

Only Jaceosidin and Petunidin are able to bind with SH3B 

and the polybasic region (PBR). The change in PBR and 

SH3B domain conformation is required for p47phox-

p22phox complex development 
17

. Since jaceosidin and 

petunidin interact with both domains, they could inhibit the 

conformational change process of p47phox. Petunidin has 

the lowest binding affinity, while trypatamine has the 

highest binding affinity among all results (Table 2). The 

docking result of control is presented in Figure 3 and Table 

2. All compounds fulfill the Lipinski rule of five, which is 

indicates that they could become oral drug candidates. 
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Figure 1. ROC curve of machine learning model.

Table 1. Ten-fold cross-validation results 

Run Score 

1 0.76 

2 0.88 

3 0.92 

4 0.88 

5 0.96 

6 0.92 

7 0.80 

8 0.84 

7 0.80 

10 0.80 
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Figure 2. Seven NOX1 inhibitor candidates that predicted with machine-learning-based screening. (A) 8,5'-Diferulic acid, 

(B) Jaceosidin, (C) Malvidin, (D) Peonidin, (E) Petunidin, (F) Sinapic acid-O-sulfate, (G) Tryptamine. 

 

 

A B C D  

E F G  H  

I  
 

 

Figure 3. Molecular docking result. (A) 8,5'-Diferulic acid, (B) Jaceosidin, (C) Malvidin, (D) Peonidin, (E) Petunidin, (F) 

Sinapic acid-O-sulfate, (G) Tryptamine, (H) Positive control (Diapocynin), (I) Negative Control. Green: p47phox (PDB id: 

1NG2), Red: ligand (selected compounds and positive control), Grey: negative control. 
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Figure 4. Interaction profile of blind docking result. (A) 8,5'-Diferulic acid, (B) Jaceosidin, (C) Malvidin, (D) Peonidin, (E) 

Petunidin, (F) Sinapic acid-O-sulfate, (G) Tryptamine. 
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Table 2. Docking Results. Blue: SH3B, Red: PBR. 

Compounds Binding Affinity Amino Acid Residue 

8,5’-Diferulic 

acid 

-7.6 Tyr167, Trp194, Cys196, Trp193 

Jaceosidin -7.5 Leu259, Asp221, Glu218, Ala207, Leu 210, 

Arg302, Arg316 

Malvidin -6.8 Asp261, Asp221, Leu260, Glu218, Ala207, Leu210 

Peonidin -7.5 Met175, Cys196, Gly192, Arg162, Trp194 

Petunidin -8.0 Ala207, Leu210, Pro212, Arg316, Asp221, Leu260, 

Asp261, Glu218 

Sinapic acid-O-

sulfate 

-6,3 Arg318, Ser303, Arg301 

Tryptamine -5.2 Val183, Cys196, Leu177 

Diapocynin -6.9 Ser303, Arg302, Arg316, Arg318, Tyr274, Asp243 

 

 
DISCUSSION 

 
This study’s weakness is the lack of a proper 

docking validation process because there is no ligand-

p47phox crystallography complex. The docking validation 

process requires the re-docking of known ligand and protein 

from ligand and protein crystallography complex to assess 

the value of the root mean square difference (RMSD) 
24

. To 

overcome that weakness, we have performed molecular 

docking on a known active inhibitor (diapocynin) and five 

non-active compounds. The result shows that all non-active 

compounds have very different configurations or binding 

positions compared to diapocynin (Table 2, Figures 3, and 

Figure 4). 

 

If the docking result is compared with the positive 

control, the docking results of jaceosidin and petunidin are 

similar to the docking results of diapocynin, which is able to 

bind with both the SH3B domain and PBR. Diapocynin is 

known as a NADPH oxidase inhibitor that inhibits the 

interaction between p47phox and p22phox  Another in silico 

study by Perez et al. also showed that diapocynin interacts 

with the SH3B domain and PBR despite using the difference 

docking method 
21

. Diapocynin is also known for its anti-

aging ability 
25

. Before entering the body, diapocynin can be 

found as apocynin. Myeloperoxidase turn apocynin into 

diapocynin 
26

. The study by Sun et al. reported that 

apocynin prevents and reverses mesenchymal stem cell 

aging 
25

. Another study found that apocynin treatment was 

able to prevent mitochondrial dysfunction in aging mice 
27

. 

Since jaceosidin and petunidin interactions with p47phox 

have similar interactions with diapocynin, they could be 

anti-aging agent candidates that work via NOX1 inhibition.  

 
 
 
 
 

 
CONCLUSION 
 

From the 2727 compounds in the Phytohub database, 

we found two compounds that could be anti-aging 

candidates by inhibiting NOX1 activity. Those two 

compounds are jaceosidin and petunidin. Further 

experimental research is required to clarify these findings. 
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