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ABSTRACT 

 

In this research, the origin of the wildfire area is assessed by using the potential 

of burn severity and the WRF-SFIRE model. This research focuses on the mountainous 

savanna region, by taking the case of the Gililawa Darat wildfire event. The most 

accurate index among Sentinel-2B optical burn severity indices, i.e. dNBR, MIRBI, 

dMIRBI, CSI, dCSI, NDVI, dNDVI, EVI, and dEVI and among Landsat-8 OLI/TIRS 

thermal and mixed burn severity indices, i.e. LST, dLST, LST/EVI, and d(LST/EVI) 

was used to map the areas with low burn severity, an indication generally found at 

origin area. A series of fire spread simulation from these areas was conducted using 

WRF-SFIRE to assess the accuracy of each simulation in reproducing the burned area. 

The burn severity accuracy assessment showed that dNBR and dCSI indices had the 

highest value of Overall Accuracy and Kappa Hat Coefficient, i.e. 91.67% and 0.889 

(almost perfect agreement). However, dNBR was the most suitable index for mapping 

burn severity in the region due to its goodness-of-fit measure for linear regression 

model with the R-squared value of 0.7856. The assessment of thermal and mixed burn 

severity indices based on Landsat-8 OLI/TIRS resulted in LST, LST/EVI, and 

d(LST/EVI) gained the same overall accuracy of 58.33% and Kappa Hat Coefficient of 

0.444 indicating moderate agreement, whereas dLST performed poorer than these 

indices. However, it is not recommended to use these burn severity indices in the region 

due to the nonlinearity of severity level with the index value. According to WRF-SFIRE 

simulations result, it was found that fire ignition started from low burn severity area 

coordinates which have a distance of 0 to 334 metres from the origin area resulting in 

fire area witan h overall accuracy value range from 77.04% to 81.90% and Kappa Hat 

Coefficient value range from 0.536 to 0.626. The simulation from the origin area 

resulted in an overall accuracy of 81.57%, a Kappa hat coefficient of 0.613, 

underestimated burned area ratio of 0.08, overestimated burned area ratio of 0.23, and a 

backing fire perimeter difference ratio of 0.4 to the reference. 

Keywords: wildfire; Gililawa Darat; wildfire spread; burn severity; WRF-SFIRE, fire 

origin area 

1. INTRODUCTION 

Wildfires have many environmental, 

social, and economic consequences 

(Jhariya and Raj, 2014). Wildfire 

investigations must be conducted to 

determine the origin and causes of fires so 

that fire events do not reoccur or become 

less common (Bureau of Indian Affairs, 
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2019). In fire investigation, the 

observations of damage after the fire are 

frequently independent of the path taken 

by the fire, making it difficult to 

determine where the fire started (Gorbett 

et al., 2015). When the flames became too 

intense, it became difficult to read any 

patterns. Observing prominent and easily 

visible fire patterns from a distance 

appears best suited for areas with high fire 

intensity (Simeoni et al., 2017). 

Burn severity which displays changes 

in objects and fuel when affected by a fire 

can be used as a fire pattern indicator. 

Satellite observation has a synoptic view 

capability to identify burn severity from a 

distance. This capability can view the fire 

patterns easier than close observation in 

the field. Remote sensing burn severity 

estimation can overcome extensive field 

surveys' cost and logistical constraints 

(Franco, et al., 2020).  

The various fire pattern indicators, 

combined, analysed within fire behaviour, 

and compared with witness statements, 

can lead to the ignition area (National 

Wildfire Coordinating Group, 2016). 

Weather Research and Forecasting Model 

(WRF) with a Spread Fire model (WRF-

SFire) can calculate the average and 

direction of the fire using surface wind 

data from interpolated atmospheric 

models and land characteristics such as 

the type, amount/mass of land cover, 

moisture content, and elevation data (Lai 

et al., 2020). 

Burn severity of a wildfire is essential 

for post-fire assessment and wildland 

management decisions (Barkley, 2019), 

and WRF–SFIRE can assist authorities in 

issuing fire bans and allocating 

firefighting and fire prevention resources 

(Mandel et al., 2014). Despite the current 

common uses, the potential use of the 

methods to determine wildfire origin 

areas was assessed in this research. The 

proposed method was assessed using the 

Gililawa Darat Island wildfire data, which 

occurred on 1
st
 August 2018. 

2. METHODOLOGY 

2.1 Study Area 

The research focused on large wildfires 

that burned Gililawa Darat island (Figure 

1) on 1
st
 August 2018 in a dry season. The 

fire was reported at around 19.00 Central 

Indonesia Time (CIT) and extinguished at 

03.10 CIT on 2
nd

 August 2018 (Balai 

Taman Nasional Komodo, 2018). 

 
Figure 1.  

Study Area  
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Gililawa Darat isa small island with an 

area of 40 hectares (from 8° 27' 39.5''S to 

8° 28' 39.3''S and from 119° 33' 5.1''E to 

119° 34' 1.1'’E. The island is a part of 

Komodo National Park in East Nusa 

Tenggara, and This island is included in 

the administrative area of the West 

Manggarai Regency. It has a hot and dry 

climate, characterized by savannah 

vegetation (Ramono et al., 2000). 

2.2 Materials 

In this study, field observation data 

were obtained from the investigation that 

was conducted by a Forensic Investigator 

Team from the Denpasar Branch of the 

Indonesian National Police Forensic 

Laboratory Centre and West Manggarai 

Regency Police on the 5th and 6th August 

2018. The Composite Burn Index (CBI) 

was used to estimate burn severity in the 

field. The severity is divided into four 

levels: unburned, low, moderate, and high 

(Key and Benson, 2006). A total of 30 

plots (20 m x 20 m) were sampled within 

the perimeter of the burned area.  

Based on the closest sensing date to the 

wildfire event and cloud free image, the 

two best datasets suitable for the study 

were selected from sentinel-2B images 

with sensing date 29
th

 July 2018 and 8
th

 

August 2018. In the same way, the two 

datasets of Landsat-8 Operational Land 

Imager (OLI)/ Thermal Infrared Sensor 

(TIRS) Collection 2 Level-1 with sensing 

date 14
th

 July 2018 and 15
th

 August 2018 

was obtained.  

Simulations based on WRF-Fire 

required input data from various sources, 

from static surface properties to 

meteorological initial and boundary 

conditions. Static geographical data was 

downloaded from WRF Model Users' 

Page website at 

https://www2.mmm.ucar.edu/wrf/ users/. 

The digital elevation model data was built 

with National Digital Elevation Model 

(DEM) from DEMNAS BIG website at 

http://tides.big.go.id/DEMNAS/. Fire 

behaviour fuel model was built by 

reclassifying Normalized Difference 

Vegetation Index (NDVI) into 13 

standards by Anderson fuel model 

(Anderson, 1982). The National Centers 

for Environmental Prediction (NCEP) 

Global Forecast System (GFS) 0.25-

degree global forecast grids historical 

archive data (ds084.1) was used as 

meteorological gridded data.  

2.3 Data Processing 

The whole step of Burn Severity 

processing was performed using QGIS 

Software with Semi-Automatic 

Classification Plugin using the Raster 

Calculator plugin with equations based on 

Stavrakoudis (2020), Zheng et al. (2016), 

and Yu et al. (2014) to calculate Sentinel-

2B optical burn severity indices, i.e.  

1. differenced Normalized Burn Ratio 

(dNBR). 

  

     
          

          
 

 
                               

(1) 

 

 

(2) 

 

2. Mid-Infrared Bispectral Index 

(MIRBI). 

 

                            (3) 

 

3. differenced Mid-Infrared Bispectral 

Index (dMIRBI) 

 

                                      (4) 

 

4. Char Soil Index (CSI). 

 

     
    

     
 (5) 

 

5. differenced Char Soil Index (dCSI). 

 

                                (6) 
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6. Normalized Difference Vegetation 

Index (NDVI). 

 

      
        

        
 (7)) 

 

7. differenced Normalized Difference 

Vegetation Index (dNDVI). 

 

                                   (8) 

 

8. Enhanced Vegetation Index (EVI). 

 

         (
       

                     
) (9) 

 

9. differenced Enhanced Vegetation 

Index (dEVI). 

 

                                (10) 

 

10. Thermal Metric LST. 

 

     
  

  
         
         

 (11) 

 

11. differenced Thermal Metric (dLST). 

 

                               (12) 

 

12. Mixed metric 

 

    

   
 

 

 (
   

   
) 

(13) 

 

 

 

(14) 

 

The continuous burn severity indices 

dataset was stratified into severity levels 

based on threshold levels to simplify the 

burned area description and comparison. 

Using the mean of the median index values 

for each consecutive pair of fire severity 

classes: unburned-low, low-moderate, and 

moderate-high, threshold values were 

calculated (Tran et al., 2018). The thresholds 

were adjusted until the highest percentage of 

samples was correctly classified (Franco et 

al., 2020). To obtain optimal thresholds, 

several trials were conducted for each 

spectral index (Marino et al., 2016). The 

most suitable burn severity index was 

determined using error matrix and was used 

to map the areas with low burn severity, an 

indication generally found at origin area 

(The National Wildfire Coordinating Group, 

2016; Simeoni et al., 2017).  

A series of fire spread simulation from 

the low burn severity areas was conducted 

using WRF-SFIRE to assess the accuracy 

of each simulation in reproducing the 

burned area. Multiple domains were run 

simultaneously at different grid 

resolutions in a two-way nested run. The 

coarse-to-fine grid ratio was five, thereby, 

atmospheric initialization (about 25 km) 

could be scaled down to the fire grid 

resolution (about 200 m). The fire model 

(coupled with the innermost domain) ran 

with mesh step 20 m. The time step for 

the inner domain and the fire model was 

1,2 s, while for the outermost domain d01 

it was 150 s. Initial conditions for all 

domains and boundary conditions for the 

outermost domain d01 were extracted 

from the NCEP GDAS/FNL 0.25 Degree 

Global Tropospheric Analyses and 

Forecast Grids (ds083.3). Model 

initialization is placed at 09:00:00 on the 

31st of July 2018 UTC, more than 24 

hours prior to the fire ignition, while the 

simulation time window is 9 hours. The 

model obtained files containing 

FIRE_AREA variable and it was used to 

asses the accuracy of the model by 

comparing the fire perimeter of the model 

with the reference (the most suitable burn 

severity index map). 

3. RESULT AND DISCUSSION 

3.1 Result 

In dNBR, MIRBI, dMIRBI, CSI, and 

dCSI map, the locations of unburned 

areas corresponded accurately to the 

actual situation which covered almost 
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only southwest region of the island. 

dMBR and dCSI were very similar in 

distributing all burn severity levels at 

entire region. In MIRBI and dMIRBI 

maps, more low severity areas were 

identified than those of dNBR, CSI, and 

dCSI maps. The wrong location of 

unburned areas among the burned areas 

was identified in CSI map. NDVI, 

dNDVI, EVI, and dEVI showed the worst 

scattering of unburned and burned areas 

at wrong locations. However, NDVI and 

dEVI could recognize unburned areas 

better that dNDVI and EVI. Figure 2 

shows difference in the distribution of 

burn severity levels when comparing the 

burn severity indices maps. 

 

 
 

Figure 2.  

Optical Burn Severity Index Maps of Gililawa Darat island based on Sentinel-2B 

datasets, that is: (a) dNBR, (b) MIRBI, (c) dMIRBI, (d) CSI, (e) dCSI, (f) NDVI, (g) 

dNDVI, (h) EVI, and (i) dEVI. 

 

A large difference is also observed 

between thermal burn severity indices, i.e. 

LST and dLST and mixed burn severity 

indices, i.e. LST/EVI and d(LST/EVI) 

which were based on Landsart-8 

OLI/TIRS datasets as shown in Figure 3. 

In the LST and dLST map, large areas of 

moderate burn severity (orange) were 

clustered in the middle part of burned 

areas. The unburned area was 

overestimated in LST and dLST map 

covering the south east part of the island 

which was burned. In dLST map, there 

were unburned and low burn severity 
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areas which were mistakenly assigned at 

the wrong location, i.e. the areas in the 

west and south east part of the island. The 

mixed burn severity indices (LST/EVI 

and d(LST/EVI)) showed the better 

distribution of burn severity levels but 

there were still large unburned areas that 

were identified at wrong locations. 

 
Figure 3.  

Thermal and Mixed Burn Severity Maps Gililawa Darat Island Based on Landsat-8 

OLI/TIRS Datasets, that is: (a) EVI, (b) dEVI, (c) LST, (d) dLST, (e) LST/EVI, (f) 

d(LST/EVI). 

 

Burn severity estimated by dNBR and 

dCSI resulted in an overall accuracy of 

91.67% and the user’s accuracy for the 

four burn severity levels was from 75% 

to 100% as shown in Table 1, indicating 

that these indices were good for 

estimating burn severity. The Kappa Hat 

Coefficient of these two indices were 

0.889 indicating the almost perfect 

agreement. dNBR and dCSI performed 

especially well for discriminating low 

severity areas with unburned, moderate, 

and high severity areas. dNBR and dCSI 

had slight difficulty in separating 

moderate (a producer’s accuracy of 

66.67%) and high (a user’s accuracy of 

75%) burn severity levels. The second 

most accurate map was the CSI map with 

an overall accuracy of 75%, it did not 

identify all severity levels areas perfectly. 

CSI had a substantial level of agreement 

with Kappa Hat Coefficient of 0.667. 

MIRBI and dMIRBI had the same overall 

accuracy of 58.33% and Kappa Hat 

Coefficient of 0.667 0.444 indicating 

moderate agreement. NDVI, dNDVI, EVI 

and dEVI showed little accuracy with 

overall accuracy values ranged from 

16.6% to 33.33% and Kappa Hat 

Coefficient values ranged from -0.111 to 

0.111 indicating no agreement and slight 

agreement. Among the Landsat-8 

OLI/TIRS thermal and mixed indices in 

Table 2, i.e. LST, dLST, LST/EVI, and 

d(LST/EVI), dLST showed the lowest 

overall accuracy with the value of 50% 

and Kappa Hat Coefficient of 0.333 

indicating fair agreement. LST, LST/EVI, 

and d(LST/EVI) showed the same overall 

accuracy of 58.33% and Kappa Hat 

Coefficient of 0.444 indicating moderate 

agreement. 
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Table 1.  Accuracy Assessment of the Optical Burn Severity Indices Based on 

Sentinel-2B Datasets 

 

UA PA 

OA 

Kappa 

Hat 

Coeffic

ient 
U L M H U L M H 

dNBR 100 100 100 75 100 100 66.67 100 91.67 0.889 

MIRBI 100 75 0 33.33 100 100 0 33.33 58.33 0.444 

dMIRBI 100 50 0 40 100 66.67 0 66,67 58.33 0.444 

CSI 100 66.67 60 100 66.67 66.67 100 66.67 75 0.667 

dCSI 100 100 100 75 100 100 66.67 100 91.67 0.889 

NDVI 100 20 0 20 66.67 33.33 0 33.33 33.33 0.111 

dNDVI 0 0 0 42.86 0 0 0 100 25 0 

EVI 0 16.67 25 0 0 33.33 33.33 0 16.67 -0.111 

dEVI 42.87 0 0 50 100 0 0 33.33 33.33 0.111 

U: unburned, L: Low severity, M: Moderate severity, and H: High severity. 
 

Table 2.  Accuracy Assessment of the Thermal and Mixed Burn Severity Indices 

Based on Landsat-8 OLI/TIRS Datasets  

 

UA PA 

OA 

Kappa 

Hat 

Coeffic

ient 
U L M H U L M H 

LST 50 66.67 100 50 100 66.67 33.33 33.33 58.33 0.444 

dLST 100 50 0 50 66.67 100 0 66.67 58.33 0.444 

LST/EVI 75 50 0 50 100 66.67 0 0.67 33.33 0.333 

d(LST/EVI) 100 60 0 50 100 100 0 33.33 58.33 0.444 

U: unburned, L: Low severity, M: Moderate severity, and H: High severity. 

 

The accuracy assessment on the optical 

burn severity indices that were based on 

Sentinel-2B datasets, dNBR and dCSI had 

the highest accuracy level and could 

discriminate areas with low burn severity 

well. However, dNBR was more 

convincing to be used obtain fire ignition 

start coordinate inputs for WRF-SFIRE 

model by considering the regression 

analysis of training plots burn severity 

value that showed the highest R-squared 

value. Whereas the thermal and mixed 

burn severity indices that were based on 

Landsat-8 OLI/TIRS datasets was not 

satisfying enough to be used due to the 

incapability of all indices in 

discriminating low severity areas well. 

Fire ignition start coordinate inputs of 

the WRF-SFIRE model were selected from 
12 coordinates of the low burn severity 

area of dNBR index map representatively. 

Coordinates 5, 6, 8, and 9 was closer to 

coordinates 7 that represented the origin 

area that the other coordinates. This 

selection was carried out with due 

observance of cardinal and ordinal points 

to assess the trend of the final fire 

perimeter, as depicted in Figure 4. 

Using dNBR map as a reference, the 

error matrix was arranged to evaluate the 

fire area agreement between reference and 

WRF-SFIRE estimation as shown in 

Figure 5. Total 3868 points coordinates 

that were represented all pixels in dNBR 

map were used to arrange the error 

matrix. The assessment was carried out by 

inspecting whether the coordinates 

covered by WRF-SFIRE fire area output 

or not.  
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Figure 4.  

The dNBR Low Severity Area Coordinates Selected as WRF-SFIRE Fire Ignition Start 

Coordinates 

 

 

 
Figure 5.  

Fire Perimeters of the Simulated Wildfire (Red Line), Which Was Started from 12 

Different Locations (White Dots) Compared with the Burned Area (Black Color) of 

dNBR. 

 

As shown in Table 3, even though the 

fire area result of the simulation which 

used the valid fire ignition start coordinate 

(coordinate 7) had a good agreement with 

reference (the overall accuracy of 81.57% 

and the Kappa hat coefficient of 0.626), 

this performance was still below that of 

the simulation which used a false fire 

ignition start at coordinate 9 (the overall 

accuracy of 81.90% and the Kappa hat 

coefficient of 0.613). However, the 

tendency of better agreement between 

reference and estimation for the 

simulations that used fire ignition start 
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coordinates near the valid fire ignition 

start coordinate could be used to be initial 

assessment of the most potential valid fire 

ignition start coordinate. It was apparent 

that the simulation that used the fire 

ignition start coordinate closed to origin 

area had the overall accuracy around 80% 

and the Kappa Hat Coefficient above 0,5 

(moderate agreement). 

 

Table 3.  Assessment of Burned and Unburned Points Coordinates Agreement of 

WRF-SFIRE Output with Those of dNBR   

Coordinate 
UA PA 

OA 
Kappa Hat 

Coefficient U 

L 

M 

H 

U 

L 

M 

H 1 30.42 100 100 0.81 30.81 0.005 

2 34.39 95.20 97.77 19.12 42.91 0.111 

3 37.25 96.40 97.52 28.76 49.56 0.180 

4 55.96 97.63 96.23 67.16 75.95 0.527 

5 63.95 88.89 76.58 81.28 79.86 0.548 

6 59.55 97.72 96.15 71.68 79.08 0.578 

7 63.42 95.84 92.31 76/91 81/57 0.613 

8 57.49 95.57 92.48 70.35 77.04 0.536 

9 63.25 97.70 95.89 75.83 81.90 0.626 

10 45.83 93.99 92.22 52.74 64.68 0.349 

11 33.02 74.51 68.97 39.32 48.29 0.063 

12 29.58 64.87 86.07 11.15 33.81 -0.018 

 

Although simulation from coordinate 7 

generated larger overestimated burned 

area than those of coordinate 9, however 

the underestimated area result was 

smaller. The overestimated burned areas 

of simulations using coordinates 11 and 

12 were at the fire's west flank, which was 

propagated mainly by lateral fire in the 

southwest and was also contributed by 

backing fire in the south direction. These 

fire spreads were resulted from placing 

the fire ignition start coordinates 11 and 

12 on the west flank of dNBR’s burned 

area perimeter, therefore, the southwest 

wind blow caused lateral fire to spread 

outward from the fire perimeter of the 

dNBR. The incorrect placement of fire 

ignition starts at coordinate 5 also resulted 

in the overestimation of fire area. 

However, coordinate 5 should not be 

taken into consideration due to the 

location had not been burned yet at least 

until 16.00 UTC according to the 

information from National Park 

personnel. On the other hand, all 

simulations except those that used 

coordinate 1 and 2, resulted in 

underestimation of fire area at east region 

of the island. The model seemed to be 

unable to capture the lateral spread at the 

flank side of the fire. Moreover, all 

simulations could not reach the backing 

region that located at the south edge of the 

island. However, the fire simulations that 

started from the valid fire ignition start 

coordinate (coordinate 7) and the nearby 

coordinates (coordinate 4, 5, 6, 8, and 9) 

showed the shape and extent of backing 

region that was closer to the reference. 

Coordinate 4 could be excluded from the 

analysis due to it had not been burned yet 

at the beginning of the actual event, 

therefore coordinate 7 generated the 

closest backing fire region to the 

reference. 
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Tabel 4.  Assessment of Overestimated Burned Area, Underestimated Burned Area and 

Backing Fire Difference   

No. 
Fire ignitions start 

coordinate 

Approx 
distance from 

origin area 

(m) 

Overestimate

d ratio to 
reference 

burned area 
 

Underestimated 

ratio to 
reference 

burned area 
 

Backing 
fire perimeter 

difference 

ratio to reference 

1 -8.4614, 119.5622 1357 0.00 0.99 0.92 

2 -8.4658, 119.5634 945 0.02 0.81 0.84 

3 -8.4703, 119.5635 573 0.02 0.71 0.74 

4 -8.4762, 119.5601 334 0.04 0.33 1.00 

5 -8.4734, 119.5605 133 0.23 0.19 0.35 

6 -8.4737, 119.5599 87 0.04 0.28 0.47 

7 -8.4733, 119.5593 0 0.08 0.23 0.40 

8 -8.4727, 119.5597 76 0.08 0.29 0.53 

9 -8.4718, 119.5596 170 0.04 0.24 0.47 

10 -8.4708, 119.5584 290 0.08 0.47 0.62 

11 -8.4728, 119.5573 232 0.31 0.61 0.65 

12 -8.4681, 119.5551 745 0.14 0.89 0.77 
 

Assessment of overestimated burned 

area, underestimated burned area and 

backing fire difference in Table 5.10 

shows that the simulation from 

coordinate 7 gained the smaller backing 

fire difference and underestimated area 

than those of coordinate 9. There was a 

tendency of the farther the coordinate 

from fire origin area, the smaller the 

differences.  

Based on the analysis of error matrix 

of burned area and fire vector spread 

particularly backing fire spread, the 

simulation that used the valid fire ignition 

start coordinate (coordinate 7) reproduced 

the fire area that was closest to the 

reference than those of using the false 

ignition start coordinate 

3.2   Discussion 

Moderate and high severity area 

spectral signature that overlapped at 

SWIR band as shown in Figure 5 was 

needed to be paid attention because it 

could bring out the inaccuracy problem, 

especially for indices that only employ 

SWIR bands, i.e., MIRBI and dMIRBI. 

These areas were indicated by little 

change between moderate and high 

severity, with only a little light-coloured 

soil exposure reflectance decrease could 

be identified. 

 

 
Figure 6.  

Sentinel-2B Spectral Signature of Burn Severity Area.  

Green: Unburned, Yellow: low, Orange: Moderate, Red: High 
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The spectral signature of moderate and 

high severity areas that overlapped at the 

Visible and NIR band also could affect 

the accuracy of indices based on these 

bands. NDVI, dNDVI, EVI, and dEVI 

which employ these bands performed 

worse than NIR-SWIR spectral indices, 

i.e., dNBR, CSI, and dCSI, indicating the 

SWIR band outperformed the Visible 

band in burn severity detection, especially 

in discriminating moderate area and high 

severity area. Although the decrease of 

Visible reflectance and SWIR reflectance 

depended on the increase of black char, 

the different widths of SWIR band 

reflectance were more significant than 

Visible band reflectance. Kumar and Roy 

(2018) simulated the spectral response of 

different fires and found that fires with a 

larger size and higher temperature had 

higher reflectance values in the longer 

wavelength bands (e.g. SWIR) and 

negligible contribution in the Red band. 

Frazer et al. (2010) also mentioned that 

the NIR-SWIR bands enabled burned 

areas to be more easily discriminated 

against than the NIR-visible bands.  

Visible-NIR indices, i.e. NDVI, 

dNDVI, EVI and dEVI showed poor 

performance. Since soils may contain 

organic materials and chemical 

constituents that could alter the 

reflectivity of the red band, using red 

band values does not model areas of 

exposed soil well. Also, burn severity and 

vegetation cover results may overlap, 

causing the findings to be overestimated 

(Wheeler, 2022). Hence the NDVI and 

dNDVI values appear not to be correlated 

to either burn severity and vegetation 

cover. Although, EVI as a modified 

version of NDVI that has been adapted 

for soil color and aerosol scattering and 

has improved sensitivity to areas which 

are rich in biomass (Ellsworth, 2012) 

could not outperformed NDVI due to the 

dry condition of the region. In addition, 

gray, which belongs to the blue spectral 

range, can be reflected from ash and char 

(Lewis et al., 2021) also could not be 

identified due to very little grey ash in the 

burned area. 

Figure 7 depicts the increase of DN 

(Digital Number) values in band 10 

Thermal Infrared 1 at the burned area. 

This increase was similar to the result of 

research conducted by Kafy et al. (2021), 

which showed an increase in Land 

Surface Temperature due to reducing 

vegetation cover. However, there were 

some problems using only this TIRS1 

data for burn severity assessment in 

Gililawa Darat. First, the order of 

increasing DN values did not correspond 

directly with the increasing order of burn 

severity level. The DN values of the high 

severity area were not the highest; 

instead, those of the low severity area 

were the highest, and the DN value of the 

high severity area was only one level 

above the unburned area. Second, all burn 

severity classes overlapped, indicating 

poor accuracy of all severity classes. 

Consequently, if only Land Surface 

Temperature (LST) values were used to 

assess the burn severity at the burned 

area, there would be incorrectness in 

assigning high severity and low severity 

areas. Integrating LST with other burn 

severity such as EVI (Enhanced 

Vegetation Index) for burn severity 

assessment would probably produce better 

accuracy. 
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Figure 7.  

Landsat 8 OLI/TIRS Band 10 Spectral Signature of Burn Severity Area. 

Green: Unburned, Yellow: Low, Orange: Moderate, Red: High 

 

All thermal indices had low Overall 

capacity and Kappa hat coefficient, 

indicating little agreement between burn 

severity and LST. The LST increase was 

detected in the burned area, but no 

increase linearity between LST and burn 

severity. Indeed, the decrease of 

vegetation in the burned area and the 

appearance of lower emissivity coverage 

(ash, char, and mineral soils) lead to a 

significant increase in the LST. However, 

aspect and illumination geometry also 

increase LST contrast in the different burn 

severity areas, so the better-illuminated 

slopes have higher contrast (Vlassova et 

al., 2014). Therefore, the nonlinearity of 

increase between LST and burn severity 

may be due to topographic influence, i.e., 

aspect and altitudinal differences. 

Thermal metrics are best to assess soil 

burn severity in locations with 

homogeneity in topography and moisture 

(Fernández-García et al, 2018), but they 

could not work well in Gililawa Darat that 

has topography heterogeneity. The 

previous research by Quintano et al. 

(2015) confirmed that topographic 

variables (elevation and aspect) related to 

LST contrast. Figure 6.5 depicts the 

relationship between burn severity, 

topographic variables, and LST. The more 

severe area in the high position, which 

faced north, tended to have higher LST. 

Indeed, integrating thermal with optical 

bands (LST/EVI and dLST/EVI) 

performed better than thermal metrics, but 

they did not exceed optical indices 

accuracy. This result was similar with the 

research result of Fernández-García et al. 

(2018). 

 This research result showed that 

the using of error matrix method alone to 

assess the agreement between burned area 

between reference and estimation (Salis et 

al., 2016; Giannaros et al., 2020) was not 

reliable for determining the correct fire 

ignition start coordinate. However, it 

could be used as a preliminary assessment 

to refine the low burned areas into the 

more potential fire origin area.  

In this research, some simulations 

showed overestimation and 

underestimation of fire area. According to 

Rim et al. (2018) and Giannaros et al. 

(2020), the overestimated burned area of 

WRF-SFIRE output could be caused by 

overestimating wind speed due to the 

coarse atmospheric-fire model mesh. 

However, the overestimation in some 

simulations in this research was not 

caused by coarse mesh due to the 

overestimation did not occur evenly at all 

fire area. It seemed that the simulated fire 

spread shifted from the actual fire 

perimeter, therefore, apart from having an 

overestimated area at one flank, an 

underestimated area is also found at the 

opposite flank. Furthermore, Mandel et al. 
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(2011) did not observe the overlarge fire 

spread at 400-metre resolution, whereas 

this research used a finer resolution (200-

metre) that could not possibly cause the 

overestimation of fire area.   

On the other hand, the large 

underestimated burned area output could 

be attributed to an incorrect fire ignition 

start coordinate as mentioned by 

Giannaros et al. (2020) or to the 

incapacity of WRF-SFIRE to capture the 

extensive mid to long-range spotting.  

Simpsons et al. (2015) pointed out that on 

steep slopes, a wildfire spread model 

which was based on fuel properties, wind, 

and slope, but without a mid-to long-

range spotting model, would understate 

the downwind extent of atypical lateral 

fire spread in a direction transverse to the 

background wind.  During severe fires in 

rough terrain, vorticity-driven lateral 

spread (VLS) might occur. Wind and 

topography could interact to create lee 

slope eddies (rotors) that conveyed 

firebrands across the direction of the 

ambient wind, sparking many spot fires 

near the fire flanks. These spot fires 

subsequently merged with other spot fires 

and the fire edge, significantly increasing 

the rate of spread (ROS) of a fire flank 

(Hilton et al., 2019; Storey, 2021a). 

Spotting could accelerate dynamic spread 

caused by interactions between wind, 

steep slopes, and active fire, resulting in 

rapid lateral fire spread over ridges 

perpendicular to the primary wind 

direction. Most existing operational fire 

spread models had a severe weakness in 

capturing the influence of spots. (Storey, 

2021b). Based on previous research by 

Simpson et al. (2016), lee fire whirls, 

which spread the fire laterally across the 

ridge, required steep lee-facing slopes, 

sufficient wind speed, and proper wind 

direction relative to the terrain aspect. 

Slope steepness at 20° required wind 

speed between 5 and 7.5 m s−1 and 

between 10 and 15 m s−1, 30° steepness 

needed wind speed between 7.5 and 10 m 

s−1, and steepness of 40° would allow 

pyrogenic vorticity, which developed and 

drove lateral spread if the wind speed was 

around 7.5 m s−1. Background wind is 

required to be angled between 20° and 

30° relative to the terrain aspect. Because 

the wind direction was between 350° and 

355° when the fire spread almost reached 

the east region, fire whirls would occur at 

lee ridge with terrain aspect between 10° 

– 25°. Figure 6.11 shows the area where 

pyrogenic vorticity and fire whirls might 

occur when the fire spread reached (based 

on fire spread of valid fire ignition start 

coordinate). However, without the 

spotting model, the lateral spread was too 

slow to capture east region resulting in 

underestimation of the east flank of the 

fire area. 

In addition, the simulation was also 

unable to capture the backing region of 

the fire area as close as the actual fire 

spread. This underestimation was most 

likely due to a simplified approach to 

backing fire ROS in the Rothermel model. 

The simplified analytical rate of spread 

(ROS) was used by empirical models to 

estimate the propagation of a fire as a 

function of time (Bakhshaii and Johnson, 

2018). When the wind component normal 

to the fire line was present, the constant 

no-wind rate of spread was still used as a 

backing fire ROS (Coen, 2013). At the 

same time, there is no general backing fire 

ROS, and its evolution needs to be 

modelled with different spread 

mechanisms (Kochanski et al., 2013b). 

Kochanski et al. (2013a and 2013b) and 

Peace (2014) identified that the 

Rothermel default no-wind ROS (which 

affects the flanks and backing fire spread) 

validates poorly for their study, and the 

same is likely to apply in the cases 

observed in this research. It could be 

understood that the model was mainly 

designed for wildfire risk management 

and firefighting (Mandel et al., 2014; 
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Bakhshaii and Johnson, 2018); therefore, 

it focuses on the most active progression 

of the fire perimeter meanwhile backing 

fire which is the slowest spread among 

the fire’s spread vectors (Coen et al., 

2013) got less attention.  

 

 
Figure 8.  

The Region with Possible Pyrogenic Vorticity and Fire Whirls 

 

4. CONCLUSION AND 

SUGGESTION 

4.1 Conclusion  

Among the optical burn severity 

indices based on Sentinel-2B datasets that 

was asessed, i.e. dNBR, MIRBI, dMIRBI, 

CSI, dCSI, NDVI, dNDVI, EVI, and 

dEVI, dNBR and dCSI indices was the 

most suitable indices for mapping burn 

severity area in Gillawa Darat island.  

WRF-SFIRE could be customized and 

applied for simulating wildfire spread in 

Gililawa Darat island by providing the 

model with several datasets, i.e. National 

Digital Elevation Model (DEMNAS) 

from from DEMNAS BIG website at http: 

//tides.big.go.id/DEMNAS/, fire behavior 

fuel model in accordance with specific 

condition in the region using NDVI index 

to map the existing vegetations, and static 

geographical datasets and NCEP 

GDAS/FNL 0.25 Degree Global 

Tropospheric Analyses and Forecast 

Grids (ds083.3) meteorological datasets 

as initial and boundary conditions input 

from National Center for Atmospheric 

Research (NCAR). A series of WRF-

SFIRE simulation using selected low burn 

severity coordinates of dNBR burn 

severity index map as fire ignition start 

coordinates showed that simulations from 

fire ignition start coordinates closed to 

origin area had the overall accuracy 

around 80% and the Kappa Hat 

Coefficient above 0,5 (moderate 

agreement).  

4.2   Suggestion  

A spotting model for fire flanks at 

steep slope must be developed in order to 

improve the functionality of WRF-Fire 

for covering the underestimation of the 

fire flank. An advanced research on 

backing fire spread can be conducted on 

improving model formulations in WRF-

SFIRE in order to be able to approach the 

actual backing fire spread. The possibility 

of using the surface wind from geo-

stationary satellites data with high 
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temporal and spatial resolution, such as 

Himawari-8 data was need to be 

researched to substitute the wind derived 

from forecast or analysis meteorological 

data in order to approach the real 

condition 
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