

FITOREMEDIASI MENGGUNAKAN TANAMAN ECENG GONDOK (Eichhornia crassipes) UNTUK MENURUNKAN COD DAN KANDUNGAN Cu DAN Cr LIMBAH CAIR LABORATORIUM ANALITIK UNIVERSITAS UDAYANA

Yuliana Herman Welhelmus Djo, Dwi Adhi Suastuti, Iryanti E. Suprihatin*, Wahyu Dwijani Sulihingtyas

Program Studi kimia FMIPA Universitas Udayana, Bukit Jimbaran, Bali-Indonesia *iryanti_suprihatin@unud.ac,id

ABSTRAK: Fitoremediasi menggunakan eceng gondok (*Eichhornia crassipes*) bertujuan untuk mengetahui efektivitas penurunan COD (*Chemical Oxygen Demand*), kandungan logam berat Cu dan Cr limbah cair laboratorium analitik dan mengetahui daya serap eceng gondok terhadap COD dan logam berat Cu dan Cr. Penelitian ini dilakukan dengan membiarkan 840 gram eceng gondok tumbuh dalam 5 liter sampel limbah cair UPT Laboratorium Analitik Universitas Udayana selama 14 hari. COD dan kandungan logam berat Cu dan Cr dalam limbah diukur setiap hari selama perlakuan. Hasil penelitian menunjukkan terjadinya penurunan COD, kandungan logam berat Cu dan Cr, yang diduga akibat adanya aktivitas biologi yang mengoksidasi senyawa organik maupun anorganik yang terkandung dalam air limbah. Konsentrasi awal COD, Cu dan Cr sebelum perlakuan adalah 47,04; 0,375; dan 2,58 mg/L dan setelah perlakuan selama 14 hari menjadi 26,34; 0,111; dan 0,72 mg/L. Efektivitas penurunan COD, Cu dan Cr berturut-turut 42,36%, 68,73%, dan 42,40%. Daya serap eceng gondok terhadap COD, Cu, dan Cr berturut-turut 0,1232; 0,0016; dan 0,0051 mg/g eceng gondok.

Kata kunci: COD, daya serap, eceng gondok, fitoremediasi, limbah laboratorium

ABSTRACT: The study research processing of liquid waste of the Udayana University Analytical Laboratory in way phytoremediation using water hyacinth (*Eichhornia crassipes*). Phytoremediation using water hyacinth (*Eichhornia crassipes*) was conducted to reduce the COD, Cu, and Cr contents of liquid waste of the Udayana University Analytical Laboratory. The study was conducted by allowing 840 grams of water hyacinth to grow in 5 dm³ of the liquid waste for 14 days. The COD, Cu and Cr concentrations in the liquid waste were measured everyday for 14 days, to determine the reduction efectivity and the adsorption capacity of the water hyacinth on those parameters. Results show that all parameters dropped within the 14 day treatment from 47.04; 0.375; and 2.58 mg/L to 26.34; 0.111; and 0.72 mg/L for COD, [Cu], and [Cr] respectively. The reduction efectivity for the respective parameters were 42.36%, 68.73%, and 42.4%. The adsorption capacity were 0.1232; 0.0016; and 0.0051 mg/g water hyacinth respectively.

Keywords: Adsorption, COD, Eichhornia crassipes, liquid waste, phytoremediation

1. PENDAHULUAN

Limbah laboratorium sebagian besar merupakan limbah cair dengan kandungan logam berat yang tinggi dan mempunyai nilai BOD (*Biological Oxygen Demand*) dan COD (*Chemical Oxygen Demand*) yang tinggi. Tingginya nilai BOD, COD, dan logam berat dalam limbah cair laboratorium disebabkan oleh pemakaian bahan-bahan kimia selama kegiatan di laboratorium [1,2].

Berdasarkan sifat dan karakteristiknya limbah cair laboratorium termasuk dalam kategori limbah bahan berbahaya dan beracun (B3) [3]. Menurut penelitian Widyawati (2014) [4], kegiatan di UPT. Lab Analitik Universitas Udayana rata-rata menghasilkan limbah cair sebanyak 50 L/hari dengan nilai pH sebesar 1,05 nilai COD sebesar 86,1056 mg/L dan BOD sebesar 29,3888 mg/L. Berdasarkan data di atas dan mengacu pada Peraturan Gubernur Bali No.16 Tahun 2016 maka nilai tersebut sudah melewati ambang batas yang telah ditentukan untuk Baku Mutu Air Kelas III yaitu sebesar 50 mg/L, sehingga tidak layak dibuang langsung ke lingkungan. Agar memenuhi baku mutu, limbah ini harus diolah.

Salah satu alternatif teknologi yang dapat digunakan untuk mengolah limbah cair adalah teknik fitoremediasi. Fitoremediasi adalah upaya penggunaan tanaman untuk dekontaminasi limbah. Salah satu jenis tanaman yang dapat untuk meremediasi limbah digunakan (Eichhornia adalah eceng gondok crassipes). Eceng gondok merupakan gulma air karena petumbuhannya yang begitu cepat. Karena pertumbuhan yang cepat maka eceng gondok dapat menutupi permukaan air dan menimbulkan masalah pada lingkungan. Namun disisi lain, eceng gondok bermanfaat karena mampu menyerap zat organik, zat anorganik serta logam berat yang merupakan bahan pencemar. Eceng gondok juga termasuk tumbuhan yang memiliki toleransi tinggi terhadap logam berat karena mempunyai kemampuan membentuk fitokelatin dimana senyawa peptide yang dihasilkan oleh tanaman mampu mengkhelat logam dalam jumlah yang besar [5].

Eceng gondok telah banyak dimanfaatkan dalam meremediasi lingkungan seperti untuk mereduksi pestisida Phospor, oleh Verma, dkk (2005) [6] untuk manyerap Pb dan Zn sebesar 17,6-80,3% dan 16,6-73,4% dari efluen industri kertas. Namun dari penelitianpenelitian tersebut, belum ada yang melaporkan tentang sistem fitoremediasi menggunakan tanaman eceng gondok untuk menurunkan nilai COD dan kandungan logam berat Cu dan Cr pada limbah cair laboratorium. Oleh karena itu dalam penelitian ini digunakan tanaman eceng (Eichhornia crassipes) dalam gondok metode fitoremediasi limbah cair UPT laboratorium untuk menurunan nilai COD dan kandungan logam berat Cu dan Cr.

2. MATERI DAN METODE

Bahan

Bahan-bahan yang digunakan dalam penelitian ini adalah limbah cair UPT laboratorium analitik Universitas Udayana, Bali-Indonesia. Bahan kimia yang digunakan adalah aquades, K₂Cr₂O₇, Ag₂SO₄-H₂SO₄, Fe(NH₄)₂(SO₄)₂ (FAS), Indikator Ferroin, CuSO₄.5H₂O, CrO₃, HNO₃, H₂SO₄.

Peralatan

Alat yang digunakan dalam penelitian ini yaitu jerigen, bak pengolahan dengan volume 10 Liter, pipet volume, pipet tetes, *beaker glass*, corong, seperangkat alat refluks, seperangkat alat titrasi, bola hisap, kertas saring, dan ICP.

Metode

Penyiapan Sampel Limbah Cair

Sampel limbah cair laboratorium diambil dari pembuangan limbah cair UPT Laboratorium Analitik Universitas Udayana. Limbah cair ditampung pada pukul 09.00-15.00 sebanyak 10 L menggunakan jerigen yang sebelumnya telah dibilas dengan aquades dan sampel limbah cair sebanyak 3 kali. Sampel limbah cair dianalisis nilai COD dan kandungan logam berat Cu dan Cr.

Penyediaan Tanaman Eceng Gondok

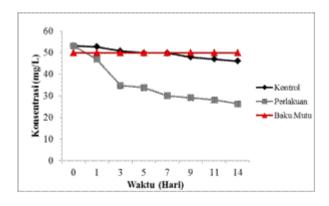
(Eichhornia crassipes)

Tanaman yang digunakan adalah tanaman eceng gondok yang diambil secara langsung dari sungai Badung di sekitar Pesanggaran Tanah Kilap. Tahap pertama yang dilakukan adalah aklimatisasi eceng gondok yang bertujuan untuk mengatur kondisi tanaman agar dapat beradaptasi dengan kondisi air limbah yang akan diolah. Aklimatisasi dilakukan dengan memasukkan eceng gondok pada bak yang berisi air bersih dengan waktu pelaksanaan selama 14 hari sebelum dipindahkan ke dalam bak pengolahan. Jenis tanaman yang digunakan ditentukan dengan determinasi untuk mendapatkan tanaman yang sejenis. hijau segar dan memiliki ukuran yang relatif sama untuk setiap ienis tanaman air. Tanaman eceng gondok (Eichornia crassipes) yang digunakan spesifikasi dengan kriteria memiliki :jumlah daun 3-6 helai, daun yang masih segar dan tidak menguning, tinggi tanaman 10-15 cm.

Proses Fitoremediasi Limbah Cair UPT Laboratorium Analitik Pemeriksaan awal

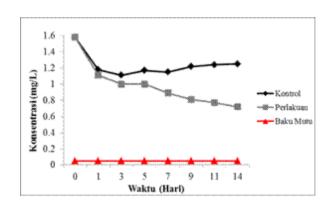
Sampel limbah cair UPT Laboratorium Analitik sebanyak 10 liter ditempatkan pada 2 buah bak masingmasing berukuran 47,5 cm x 32,5 cm x 30,5 cm. Eceng gondok dengan ukuran, umur, dan jumlah yang sama yang telah diaklimatisasi diletakkan dalam bak A yang berisi limbah cair. Bak B digunakan sebagai kontrol dimana pada bak ini tidak berisi tanaman eceng gondok hanya berisi limbah cair. Perlakuan diberikan pada bak pengolahan A vaitu variasi waktu kontak antara eceng gondok dengan limbah cair. Adapun waktu kontak yang digunakan adalah 1 sampai 14 hari. Pada setiap waktu kontak diambil sampel limbah masingmasing sebanyak 75 mL untuk analisis COD dan analisis kandungan logam berat Cu dan Cr. Bak B digunakan sebagai kontrol yang juga disampling tiap waktu kontak 1 sampai 14 harihari dengan sampling dilakukan ulangan sebanyak 3 kali [7].

Pengamatan dilakukan dengan mengukur nilai COD dan kandungan logam berat Cu dan Cr pada waktu kontak 1 sampai 14 hari. Data yang diperoleh dari pengukuran nilai COD dan kandungan logam berat Cu dan Cr dalam sampel limbah cair UPT laboratorium analitik kemudian diplotkan terhadap perlakuan sehingga diperoeh kurva yang menunjukkan kemampuan eceng gondok dalam proses fitoremediasi. Pada setiap hari, sampel diambil untuk diukur konsentrasi COD dan logam berat Cu dan Cr.

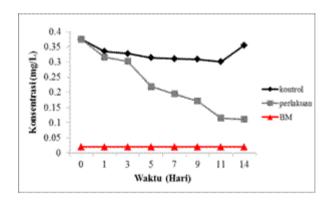

Analisis Data

Analisis data dilakukan dengan cara rekapitulasi data hasil pengujian terhadap kemapuan eceng gondok (*Eichhornia crassipes*) dalam menurunkan nilai COD dan kandungan logam berat Cu dan Cr pada keadaan awal dan akhir setelah pengolahan. Data yang diperoleh dibuat grafik untuk masing-masing parameter yaitu nilai COD dan kandungan logam berat Cu dan Cr terhadap kontrol kemudian dibandingkan dengan baku mutu air kelas III berdasarkan Peraturan Gubernur Bali No.16 Tahun 2016.

3. HASIL DAN PEMBAHASAN


Penurunan Nilai COD Pada Limbah Cair UPT Lab.Analitik Universitas Udayana

Kemampuan eceng gondok dalam menurunkan nilai COD pada limbah cair UPT Lab Analitik Universitas Udayana selama 14 hari disajikan pada Gambar 1.



Gambar 1.Penurunan COD oleh sistem fitoremediasi

Nilai COD selama pengolahan limbah secara fitoremediasi menggunakan gondok mengalami penurunan (Gambar 1). Nilai terendah diperoleh pada pengolahan hari ke 14 yaitu mencapai 26,3424 mg/L. Hal ini disebabkan oleh mikroorganisme yang terdapat pada akar eceng gondok, dimana proses fitoremediasi ini memiliki peranan penting dalam menyerap kandungan pencemar organik. Tumbuhan dapat menyerap pencemar sejauh akar tanaman tersebut tumbuh. Mikroorganisme yang tumbuh pada akar eceng gondok ini semakin efektif dalam menurunkan nilai COD karena jumlah mikroorganisme semakin banyak mikroorganisme tersebut semakin mampu beradaptasi dengan lingkungan tersebut [8].

Gambar 2. Konsentrasi Cu dengan fitoremediasi

Gambar 3. Konsentrasi Cr dengan fitoremediasi

Berdasarkan penelitian Setiadi dkk [8] bahwa proses penurunan konsentrasi pencemar dalam air limbah menggunakan tanaman air merupakan kerjasama antara tumbuhan dengan mikroorganisme yang berasosiasi dengan tumbuhan tersebut. Pertama air limbah dioksidasi untuk melepaskan energi yang digunakan oleh mikroorganisme untuk pemeliharaan dan pembentukan sel baru. Limbah organik mengandung CHONS (carbon, hydrogen, oxygen, nitrogen, sulphur) dan C5H7NO2 mewakili serat sel tersebut. dimana reaksinva adalah:

Oksidasi:

$$CO2 + H2O + NO3 + Produk + energi$$

Persenyawaan:

CHONS + O2 + Mikroorganisme + Energi

Reaksi ini berlangsung di perairan yang mengandung limbah organik [9]. Mikroorganisme yang berada di fase eksponensial, vaitu suatu kondisi terjadi peningkatan iumlah sel karena mikroorganisme mengalami fase pertumbuhan. Pada fase eksponensial, jumlah mikroorganisme mencapai jumlah maksimal sehingga limbah organik dapat didegrasi dengan maksimal [10]. Hal tersebut telah sesuai dengan penelitian ini yaitu pada hari ke 14 telah teriadi penurunan maksimal limbah pada laboratorium UPT Analitik.

Penurunan Kandungan Logam Berat Cu dan Cr

Berdasarkan penelitian yang telah dilakukan, penurunan kandungan logam berat Cu dan Cr pada sampel limbah cair UPT Lab Analitik Universitas Udayana dapat dilihat pada Gambar 2 dan Gambar 3.

Pada Gambar 2 dapat dilihat bahwa penurunan kadar Cu terendah terjadi pada perlakuan hari ke 14 yaitu 0,111 mg/L. Rendahnya kadar Cu disebabkan oleh sebagian Cu telah diserap oleh tanaman eceng gondok. Tetapi konsentrasi Cu hingga pengolahan hari 14 masih di atas baku mutu kualitas air berdasarkan PerGub Bali No 16 Tahun 2016 yaitu 0,02 mg/L. Berdasarkan penelitian Ratnani [11], belum penurunan konsentrasi efektifnva disebabkan oleh kemampuan eceng gondok lebih optimal dalam menyerap senyawa dan fosfor yang tercemar, nitrogen sehingga untuk menyerap logam eceng gondok masih kurang optimal.

Logam Cu merupakan logam esensial, dimana jika dalam konsentrasi rendah akan memacu pertumbuhan eceng gondok sedangkan dalam konsentrasi tinggi dapat menghambat pertumbuhan. Menurut Palar [12], biota di perairan cukup peka dengan adanya kelebihan logam Cu di perairan. Dari hasil tersebut, maka penurunan konsentrasi logam Cu pada limbah laboraturium Analitik Unud masih belum bisa memenuhi baku mutu.

Berdasarkan Gambar 3 dapat dilihat bahwa kadar Cr terendah diperoleh pada perlakuan fitoremediasi hari ke 14 sebesar 0,72 mg/L dibandingkan dengan kontrol vaitu 1,25 mg/L. Konsentrasi logam Cr didedagrasi oleh mikroorganisme perairan, hal ini terbukti pada kontrol juga terjadi penurunan nilai Cr. Selama 14 hari proses sistem fitoremediasi pengolahan. oleh eceng gondok belum efektif dalam menurunkan konsentrasi Cr untuk mencapai konsentrasi di bawah baku mutu.

Penggunaan sistem fitoremediasi menggunakan eceng gondok bertujuan menjadikan bioakumulator pencemaran air kemampuannya dalam mengakumulasi logam berat. Ini dimungkinkan karena pada akar eceng gondok terdapat mikroorganisme yang mampu mengurai (rhizosfera) senyawa organik, anorganik bahkan logam berapat di perairan yang digunakan sebagai sumber makanan. Selain mikroorganisme ini juga mampu mengubah Cr anorganik menjadi Cr organic yang selanjutnya diserap oleh akar eceng gondok dan digunakan sebagai kofaktor dari enzim plastosianin yang berguna dalam proses fotosintesis yang merangsang pembelahan sel pada eceng gondok [13]. Tetapi pada penelitian ini penggunaan sistem fitoremediasi menggunakan tanaman eceng gondok belum optimal dalam menurunkan pencemar logam Cu dan Cr pada limbah laboratorium Analitik Unud. Hal mungkin karena tingginya konsentrasi logam dalam limbah dan, seperti yang diungkapkan oleh Sutrisno dkk [14], belum optimalnya kemampuan mikroorganisme yang menempel pada akar eceng gondok dalam menguraikan senyawa logam berat tersebut.

Efektivitas Fitoremediasi dan Daya Serap Eceng Gondok

Efektivitas eceng gondok dalam menurunkan kadar COD, logam Cu dan Cr pada air limbah laboratorium memiliki pola yang cenderung linear atau mengalami peningkatan. Untuk COD. terjadi peningkatan efektivitas penurunan dari hari ke-1 hingga ke-14, yakni dari 10,71% menjadi 42,86%. Berbeda halnya dengan logam Cu dan Cr, pada hari ke-1 kedua logam menunjukkan nilai efektivitas yang cenderung tidak berbeda jauh, yakni 5,67% dan 5,92%, secara berurutan untuk logam Cu dan Cr. Sedangkan pada hari ke-14, terjadi perbedaan yang signifikan pada efektivitas dari kedua logam tersebut, yakni 68,73% untuk Cu dan 42,4 % untuk Cr.

Tabel 1. Efektivitas Penurunan COD, Logam Cu dan Cr Dengan Fitoremediasi Menggunakan Eceng Gondok

1,1011980110111011 = 00119 = 0110011			
Waktu	Efektivitas (%)		
(Hari)	COD	Cu	Cr
1	10,71	5,67	5,92
3	31,48	7,92	9,99
5	32,08	30,25	14,52
7	39,62	37,29	22,60
9	39,22	44,66	33,60
11	40,00	61,79	37,90
14	42,86	68,73	42,4

Efektivitas penurunan COD dapat dipengaruhi oleh beberapa faktor yakni (a) volume reaktor, (b) waktu tinggal padatan atau substrat, (c) kandungan oksigen dan volume lumpur, serta (d) jumlah tanaman diaplikasikan pada fitoremediasi [1,15]. Efektvitas parameter COD mengalami peningkatan dari hari pertama hingga 14. Ini disebabkan oleh oleh proses fitoremediasi tanaman eceng gondok dalam menyerap polutan organik melalui akarnya. Selanjutnya senyawa organik yang diserap akan masuk ke batang melalui pembuluh pengangkut kemudian menyebar ke seleuruh bagian tanaman gondok. Senyawa organik selanjutnya akan mengalami reaksi biologi dan terakumulasi di batang tanaman untuk diteruskan ke daun [7,11].

Efektivitas penurunan konsentrasi Cu mengindikasikan yang cukup tinggi terdapatnya faktor yang berperan selain empat faktor yang disebutkan diatas. Efektivitas yang cukup tinggi disebabkan logam Cu yang terlarut di dalam air dapat direduksi oleh mikroba rhizosfera yang terdapat pada akar eceng gondok dengan cara menyerapnya dari perairan dan sedimen kemudian mengakumulasikan kedalam bahan terlarut ini struktur tubuhnya. Disamping itu mikroba rhizosfera mampu mengubah Cu anorganik menjadi Cu organik yang kemudian akan diserap oleh akar eceng gondok dan digunakan sebagai kofaktor (metalloenzim) dari enzim plastosianin yang berguna dalam proses fotosintesis vaitu untuk merangsang pembelahan sel eceng gondok Menurut [5]. Mahmud dkk mekanisme penyerapan dan akumulasi logam berat oleh tumbuhan dibagi menjadi tiga proses yaitu penyerapan oleh akar lewat pembentukan suatu zat khelat yang disebut fitosiderofor yang akan mengikat logam berat dan membawanya ke dalam sel akar, selanjutnya proses translokasi logam dari akar ke bagian lain tumbuhan melalui jaringan pengangkut xylem dan floem dan yang terakhir adalah lokaslilasi logam pada bagian sel tertentu untuk menjaga agar tidak menghambat metabolisme tanaman tersebut.

Berbeda halnya pada logam Cr, nilai efektivitas yang didapatkan berada di bawah logam Cu. Pada sistem transportasi akar eceng gondok, absorbsi logam Cu dan Cr mengalami kompetisi. Logam Cu merupakan mikronutrien yang diperlukan oleh tanaman eceng gondok dalam proses metabolismenya. Oleh karenanya logam Cu akan diserap oleh akar lebih dahulu dibanding dengan logam Cr [17].

Efektivitas tertinggi dihasilkan pada logam Cu yaitu mencapai 68,73%, menunjukkan bahwa persentase efektivitas penurunan pencemaran parameter Cu telah efektif (>50%). Penurunan tertinggi disebabkan logam Cu merupakan logam essensial yang dalam konsentrasi tertentu dibutuhkan oleh mikroorganisme sebagai koenzim dalam proses metabolisme tubuh [18].

Daya serap diperoleh melalui pengurangan konsentrasi awal dengan konsentrasi sisa dimana konsentrasi sisa dari tiap-tiap perlakuan didapatkan dengan menggunakan ICP dapat diketahui berdasarkan rumus berikut:

$$daya \ serap = \frac{(kadar \ awal - kadar \ akhir) \ (mg)}{berat \ eceng \ gondok \ (g)}$$

Berdasarkan formula tersebut dapat diketahui daya serap gondok eceng terhadap logam Cu 0,0016 mg/g eceng gondok, Cr 0,0051 mg/g eceng gondok dan COD 0,1232 mg/g eceng gondok . Daya tersebut tergantung pada karakteristik limbah dan konsentrasi limbah yang diolah. Berdasarkan penelitian Rorong dan Edy [19], dijelaskan bahwa konsentrasi logam dalam limbah juga mempengaruhi pertumbuhan tanaman; dengan meningkatnya konsentrasi logam dalam limbah maka pertumbuhan tanaman menjadi terhambat. Kemampuan eceng gondok dalam menyerap pencemar disebabkan oleh akarnya yang bercabangcabang halus, yang digunakan oleh mikroorganisme sebagai tempat pertumbuhan.

4. SIMPULAN

Sistem Fitoremediasi dengan eceng gondok selama 14 hari dapat menurunkan nilai COD sebesar 20,7 mg/L, logam Cu dan Cr masing-masing sebesar 0,264 dan 0,86 mg/L, dengan efektivitas penurunan berturut-turut sebesar 38,15%, 63,06% dan 36,48%.

Daya serap eceng gondok dalam sistem fitoremediasi untuk COD sebesar 0,1232 mg/g eceng gondok, logam Cu dan Cr masing-masing 0,0016 mg/g eceng gondok dan 0,0051 mg/g eceng gondok

5. UCAPAN TERIMA KASIH

Pada kesempatan ini penulis ingin mengucapkan terima kasih kepada Dra. Emmy Sahara,M.Sc(Hons) dan A.A.Istri Agung Mayun Laksmiwati, S.Si.,M.Si yang telah memberikan masukan serta kritikan demi kesempurnaan dan kelancaran penelitian, penulisan skripsi, hingga penyusunan tulisan ini.

6. DAFTAR PUSTAKA

- [1] Trisnawati, N, Putra Manuaba. Iryanti E S. 2016. Fitodegradasi dengan Tanaman Pacing (Speciosus cheilocostus) untuk Menurunkan Kandungan Pb,Cd,dan Hg//Limbah Cair Laboratorium. *Jurnal Cakra Kimia*, 4 (1): 77 83
- [2] Rohaeti Eti., F.T.Nenny., dan
 B.Imadia 2011. Pengolahan Limbah
 Cair Dari Kegiatan Praktikum
 Analisis Spot Test Dengan Koagulasi
 Menggunakan Polialuminium

- Klorida, *Prosiding Seminar Nasional Teknologi Pengelolaan Limbah* IX ISSN 1410-6086.
- [3] Suprihatin dan Indrasti Nastiti Siswi. 2010. Penyisihan Logam Berat Dari Limbah Cair LAboratorium dengan Metode Presipitasi dan Adsorpsi. *Makara Sains*, 14 (1): 44-50
- [4] Widyawati, Y, R, 2014. Efektivitas
 Lumpur Aktif (Activated Sludge)
 Dalam Menurunkan Nilai BOD
 (Biological Oxygen Demand) Pada
 Limbah Cair UPT. Lab Analitik
 Universitas Udayana. Skripsi.
 Jurusan Kimia Universitas Udayana.
 Jimbaran
- [5] Setyowati, S., Nanik H.S., Erry W. 2015. Kandungan Logam Tembaga (Cu) dalam Eceng Gondok (*Eichhornia crasipes*) Perairan dan Sedimen Berdasarkan Tata Guna Lahan di Sekitar Sungai Banger Pekalongan. *Bioma*, 7 (1): ISSN 1410-8801
- [6] Verma, V.K., R.K Gupta, dan J.P.N Rai. 2005. Biosorption of Pb and Zn from pulp and paper industry effluent by water hyacinth (Eichhornia crassipes).

 http://www.niscair.res.in/ScienceCommunication/ResearchJournals/rejour/Jsir/jsir2k5/jsir_oct05.asp. IPC Code: C02F3/32. Cited: 8 Mei 2016
- [7]Dwijayanti,N.P.A.,I.E.Suprihatin.,D.Putr a, 2016. Fitoekstraksi Cu, Cr, dan Pb Limbah Tekstil dengan Tumbuhan Kiambang (*Pistia stratiotes* L). *Jurnal Kimia* 10 (2): 275-280.
- [8] Setiadi, Tjandra., Pertiwi, Fransisca I., Widyarsa, Irma I., 1999. Pengolahan Limbah Cair Industri Tekstil yang Mengandung Zat Warna Azo Reaktif dengan Proses Gabungan Anaerob dan Aerob, Laboratorium

- Mikrobiologi dan Teknologi Bioproses, Jurusan Teknik Kimia Institut Teknologi Bandung, Bandung.
- [9] Singh, N.B., Ruchi Singh., Mohammed, M.I., 2014. Waste Water Management in Dairy Industry: Pollution Abatement and Preventive Atitudes. Internasional Journal of Science, *Environment and Technology*, 3 (2): 672 – 683.
- [10] Suyasa, B. 2015. Pencemaran Air dan Pengolahan Air Limbah. Denpasar: Udayana University Press.
- [11] Ratnani, R.D,. 2012. Kemampuan Kombinasi Eceng Gondok dan Lumpur Aktif untuk Menurunkan Pencemaran pada Limbah Cair Industri Tahu. *Momentum*, 8 (1): 1-5.
- [12] Palar, H. 1994. *Pencemaran dan Toksikologi Logam Berat*. Rineka Cipta. Jakarta.
- [13] Tangio J, S. 2015. Adsorpsi Logam Timbal (Pb) dengan menggunakan Biomassa Eceng Gondok (*Eichhornoa crassipes*). *Jurnal Entropi*. 8(1): 500 – 506
- [14] Sutrisno, R Artanti., T. Dewi. 2009. Fitoremediasi untuk Rehabilitasi Lahan Pertanian Tercemar Kadmium (Cd) dan Tembaga (Cu). *Jurnal Tanah dan Iklim No. 30/2009*. ISSN 1410-7244.

- [15]Dewi,K.S.P.,Suarya.,I.E.Suprihatin.,W. D. Sulihingtya 2016. Penurunan BOD, COD, dan Zat Warna Limbah Pencelupan dengan Fitoekraksi menggunakan Kiambang (Salvinia natans). *Jurnal Bumi Lestari*, Vol. 16 No.1: 11-15.
- [16] Mahmud, M., Fitryane Lihawa, Ishak Isam Indriaty M Patuti. 2015. Fitoremediasi sebagai Alternatif Pengurangan Limbah Merkuri Akibat Penambangan Emas Tradisional di Sungai Ekosistem Tulabolo Kabupaten Bone Bolango. Jurnal. Universitas Negeri Gorontalo.
- [17] Irhamni., Setiaty P., Edison P., Wirsal Н., 2015. Kajian Akumulator Beberapa Tanaman Air dalam Berat Menyerap Logam Secara Fitoremediasi. Jurna Serambi Engineering. 75 - 84
- [18] Fitriyah, A W., Yudhi Utomo., Irma K. Kusumaningrum. 2013. Analisis Kandungan Tembaga (Cu) dalam Air dan Sedimen di Sungai Surabaya. *Jurnal Online Kimia Universitas Negeri Malang*, 2 (1): 1 8
- [19] Rorong J A., Edi S. 2010. Analisis Fitokimia Enceng Gondok (Eichhornia crasssipes) dan Efeknya sebagai Agen Photoreduksi Fe³⁺. *Chemistry Progress*, 3 (1): 33 41