Effect of Irradiation Area and Delay Time Processing On Exposure and Deviation Index Computed Radiography AGFA Series CR10-X
Abstract
Abstract – Research has been carried out to determine the effect of irradiation area and delay time processing on the exposure index (EI) and deviation index (DI) of computer radiography (CR). The tools used are phantom skull, imaging plate (IP), grid, and CR. The exposure factor used is set constant. To find out the EI value, exposure was carried out with the following variations of the irradiation area, 25 cm x 25 cm, 25 cm x 28 cm, 28 cm x 30 cm, 30 cm x 36 cm and 30 cm x 43 cm. Then the exposure was carried out using a constant irradiation area of ??25 cm x 25 cm, but the delay time processing variations were carried out as follows, 5, 10, 15, 20, 25 minutes. The EI value is used to find the DI value. Next, a graph is made and a test is carried out in the form of a regression test to determine the relation between the area of ??irradiation on EI and delay time processing on EI. Path analysis was also carried out to determine the relation between the area of ??irradiation to DI and delay time processing to DI. The results of the regression test showed that the irradiation area and delay time processing had a significant effect on EI. The results of the path analysis test show that the area of ??irradiation has no significant effect on DI, while delay time processing and EI have a significant effect on DI.
Key words: Exposure index, deviation index, delay time processing, irradiation area, computed radiography
Downloads
References
[2] M. Baker, Investigation into Factors Influencing Fuji S-Value Using an Extremity Phantom, Journal of Medical Imaging Radiation Sciences, vol. 43, no. 1, 2012, pp. 34-37.
[3] J. P. Lampignano and L. E. Kendrick, Textbook of radiographic positioning and related anatomy (9th ed.), Amsterdam, 2017.
[4] S. Don, B. R. Whiting, L. J. Rutz and B. K. Apgar, New Exposure Indicators for Digital Radiography Simplified for Radiologists and Technologists, American Journal of Roentgenology, vol. 199, no. 6, 2012, pp. 1337-1341.
[5] D. Rochmayanti, D. Darmini dan M. Jannah, Faktor Determinan Kolimasi, Ukuran Imaging Plate Dan Delay Time Processing Terhadap Exposure Index, Jurnal Riset Kesehatan, vol. 6, no. 2, 2017, pp. 1 – 6.
[6] L. G. P. Satwika, N. N. Ratini, dan M. Iffah, Pengaruh Variasi Tegangan Tabung Sinar-X Terhadap Signal to Noise Ratio (SNR) Dengan Penerapan Anode Heel Effect Menggunakan Stepwedge, Jurnal Fisika, vol. 22, no. 1, 2021, pp. 20-28.
[7] W. J. Meridith and J. B. Massey, Fundamental Physics of Radiology (3rd ed.), Oxford, 2013.
[8] N. N. Ratini, I. M. Yuliara, Windaryoto, Anoda Heel Effect Aplication with Step Wedge Against Effect of Signal to Noise Ratio in Computed Radiography, International Journal of Health Sciences, vol.3, no.3, 2020, pp.75-82
[9] A. Musfira, Analisis Perbandingan Dosis Serap Radiasi Foto Thorax pada Pasien dengan Berbagai Tingkat Umur, Skripsi, Program Studi Fisika, Fakultas Sains dan Teknologi UIN Alauddin Makasar, 2016.
[10] A. Pasinringi, Pengujian Kesesuaian Antara Lapangan Penyinaran Kolimator Dengan Berkas Radiasi yang Dihasilkan Pada Pesawat Sinar-X Mobile di Rumah Sakit Umum Daerah Tani dan Nelayan Gorontalo, Skripsi, Jurusan Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Hasanuddin, 2012.
[11] M. D. Ginting, Analisis Kualitas Gambar Radiografi pada Pemeriksaan Mammae Terhadap Densitas Gambar dan Faktor Eksposi, Skripsi, Departemen Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Sumatera Utara, 2016.
[12] J. A. Seibert and R. L Morin, The standardized exposure index for digital radiography: an opportunity for optimization of radiation dose to the pediatric population, Pediatr Radiol vol. 41, no. 1, 2011, pp. 573 – 581.
[13] I. K. Putra, G. A. A. Ratnawati and G. N. Sutapa, Monitoring of Patients Using Radiodiagnostic Dosage EI (Exposure Index) on CR (Computed Radiography), International Research Journal of Engineering, IT & Scientific Research, vol. 6, no. 6, 2020, pp. 45 – 49.