Effect of Variation Substitution of Nd and Eu on the Crystal Structure of Y-124 Superconductor (Y1-x-yNdxEuyBa2Cu4O8??)
Abstract
In this study, the substitution of elements Nd and Eu on the superconductor Y1-x-yNdxEuyBa2Cu4O8?? (Y-124) has been carried out using compounds Y2O3, BaCO3, CuO, Nd2O3 and Eu2O3 with molar variations of Nd (x) and Eu (y), respectively. 0, 0,05, 0,1, 0,15 and 0,2 respectively to determine the effect of Nd and Eu substitution on the volume fraction and crystal structure of the superconducting Y-124. Samples were synthesized using wet mixing method with HNO3 as solvent, followed by calcination process at 600 oC for 3 hours and sintering process at 900 oC for 10 hours. Analysis of the structure of the superconducting Y-124 was carried out by characterizing X-ray Diffraction (XRD) and Fourier-Transform Infrared Spectroscopy (FTIR). The results of XRD characterization showed a fine and sharp spectrum which indicated that crystallization had occurred completely. The resulting spectrum was dominated by the Y-124 phase and a small percentage of the impurities were detected. Substitution of Nd and Eu elements resulted in volume fractions of 82,7 %, 83,6 %, 84,4 %, 87,0 % and 85,9 %, respectively. The volume fraction value increased with the addition of Nd and Eu from 0 to 0,15, then decreased at 0,2. This indicates that the optimization of the addition of Nd and Eu is at a value of 0,15 in the molar ratio of compounds. The substitution of Nd and Eu elements also causes changes in the lattice parameters towards the a-axis with values between 3,7549 and 3,8323 , towards the b-axis with values between 3,8094 and 3,8425 , and towards the c-axis with values between 26,7390 and 26,8970. The FTIR results show the presence of an absorption band in the YBCO region, but the sample still contains impurities which are indicated to come from BaCO3 and HNO3.
Downloads
References
[2] M. Savitri, S. R. Khayati, Y. Maryati, K. W. Veronica, W. A. Somantri, T. Saragi, Risdiana, Sintesis dan Karakterisasi Bahan Superkonduktor YBa2Cu3O7, Jurnal Material dan Energi Indonesia, Dapertemen Fisika FMIPA universitas Padjadjaran, Vol. 05, No. 02, 2015, 35 -38.
[3] M. K. Wu, J. R. Ashburn, C. J. Torng, Hor, P. H., Meng, R. L., Gao, L., Huang, Z. J., Wang, Y. Q., Chu, C. W., Superconductivity at 93 K in a New Mixed-phase Y-Ba-Cu-O Compound System at Ambient Pressure, Physical Review Letters, Vol. 58, No.9, 1987, 908-910.
[4] K. Nisa, Sintesis dan Karakterisasi FeTe1-xSx dengan Metode Pemaduan Mekanik dan Perlakuan Panas Sebagai Material Superkonduktor, Skripsi, Universitas Airlangga, Surabaya, 2016.
[5] I. G. C. Pradhana, W. G. Suharta, I G. A. Widagda, Pengaruh Variasi Temperatur Sintering Terhadap Struktur Kristal Superkonduktor Y0,5La0,5Ba2Cu3 , Buletin Fisika, Vol.17, No.1, 2016, 34-40.
[6] M. M. A. Dihom, Microstructure and Superconducting Properties of Y-Ba(Ca/K)-Cu-O (Y-123 and Y-358) Systems Synthesized Using Thermal Treatment Method, Tesis, Universitas Putra Malaysia, Malaysia, 2018.
[7] W. G. Suharta, Sintesis Struktur Kristal dan Sifat Magnetik Superkonduktor REBa2Cu3O7-δ (RE = Nd, Eu, Gd), Disertasi, Institut Teknologi Sepuluh Nopember, Surabaya, 2013.
[8] U. Topal, M. Akdogan, H. Ozkan, Electrical and Structural Properties of RE3Ba5Cu8O18 (RE = Y, Sm and Nd) Superconductors, Springer, J Supercond Nov Magn 4, 2011, 2099–2102.
[9] M. Verma, V. S. Tomar, Comparison of Co and Ni Doping at Copper Sites in Y-124 High Temperature Superconductor, Elsevier, Physica C 272, 1996, 35-341.
[10] P. Karen, A. Kjekshus, F. Andresen, Superconducting and Structural Properties of Strontium-Substituted YBa2Cu4O8, Acta Chemica Scandinavica, Vol. 46, 1992, 1059-1064.
[11] H.N. Hidayah, S.Y. Yahya, H. Azhan, K. Azhan, J.S. Hawa, A.W. Norazidah, The Comparisons Between Y-123 and Y-124 Superconductor Substituted with Ca at the Cu-Site, Journal of Superconductivity and Novel Magnetism, Vol 26, 2013, pp 953-957.
[12] H. Schwer, E. Kaldis, J. Karpinski, C. Rossel, Effect of Structural Changes on the Transition Temperatures in Y2Ba4Cu7O14+x Single Crystals, Physica C, Vol. 211, 1993, 165-178.
[13] R.J. Cava, A.W. Hewat, B. Batlogg, E.A.jr., Hewat, M. Marezio, K. M. Rabe, J.J. Krajewski, W. F. jr. Peck, L. W. jr. Rupp, Structural anomalies, oxygen ordering and superconductivity in oxygendeficient Ba2 Y Cu3 Ox, Physica C (Amsterdam) 165, 1990, 419-433.
[14] A. Kern, A. Geyer, W. Eysel, Miner-Petrog, Inst. Heidelberg, Germany, ICDD Grant-in-Aid, 1993.
[15] K. P Wijaya, Suprihatin, P. Manurung, Variasi Kadar CaCO3 Terhadap Pertumbuhan Fasa Superkonduktor BPSCCO-2223 Menggunakan Metode Pencampuran Basah, Journal Aplikasi, Informasi, Elektronika dan Komputer, Vol.2, No. 1, 2020, 80-89.
[16] B.A. Hunter, Rietica for Windows Version 4.0,, IUCR Powder Diffraction 22, 21, 1997.
[17] A. Mukminin, Analisis kuantitatif Fasa dan Parameter Kristal Abu Cangkang Keong Mas (Pomacea canaliculate L) Hasil Kalsinasi Suhu Tinggi Menggunakan Metode Rietveld, Jurnal Chemurgy, Vol.2, No.2, 2018, 15-19.
[18] B. D. Cullity, Elements of X-Ray Diffraction, 2nd ed., USA: Addison-Wesley Publishing Company, Inc, 1978, 84 and 501.
[19] A. A. Damayanti, Identifikasi Bilangan Gelombang Daun Sirih (Piper sp.) Menggunakan Metode Spektroskopi Fourier Transform Infrared (FTIR) dan Principal Component Analysis (PCA), Skripsi, Universitas Udayana, Denpasar, 2020.
[20] L. Rahman, D. K Maharani, Kajian Karakterisasi Spektrofotometri Infra Merah dan Difraksi Sinar X Katalis Oksida Logam Cu/Ni/γ-Al2O3, Unesa Journal of Chemistry, Vol.2 No. 3, 2013, 109-111.
[21] M. Sumadiyasa, I G. A. P. Adnyana, I G. A. Widagda, W. G. Suharta, Analisis Spektra FTIR Bahan Superkonduktor Fase (GD,LA) Ba2Cu3 , Prosiding Seminar Nasional Sains dan Teknologi 2015, Udayana University Press, Kuta, 2015, Oktober 2015, 1644-1650.
[22] A. T. H. Pertiwi, Sintesis N’-Benzilidensinamoilhidrazida dan N’-(4-Metoksibenziliden) Sinamoilhidrazida dari Bahan Awal Asam Sinamat dengan Iradiasi Gelombang Mikro, Skripsi, Universitas Airlangga, Surabaya, 2016.
[23] V. A. Maroni, J. L. Reeves, G. Schwab, On-line Characterization of YBCO Coated Conductors Using Raman Spectroscopy Methods, Applied Spectroscopy, Vol.61, Number 4, 2007, 359-366.
[24] V. Ischenko, J. Woltersdorf, E. Pippel, R. Koferstein, H. P. Abicht, Formation of Metastable Calcite-type Barium Carbonate During Low-temperature Decomposition of (Ba, Ti)-precursor Complexes, Solid State Sciences, 2007, 303-309.