KETAHANAN Lactobacillus spp. FBB PADA SIMULASI SALURAN PENCERNAAN BAGIAN ATAS UNTUK PENGEMBANGAN PROBIOTIK

(RESISTANCE OF Lactobacillus spp. FBB TO SIMULATION OF UPPER PART INTESTINAL TRACT CONDITION FOR PROBIOTIC DEVELOPMENT)

Ida Ayu Sri Sinca Maha Uni¹, Yan Ramona ^{1,2}, I Nengah Sujaya ^{2,3*}

¹Program Studi Magister Biologi Universitas Udayana, ²UPT Laboratorium Terpadu Biosain dan Bioteknologi, Universitas Udayana, ³Program Studi Ilmu Kesehatan Masyarakat, Universitas Udayana *) Email : sakabali@hotmail.com

ABSTRACT

Lactobacillus spp. FBB (isolates 60, 72, dan 75), isolated from feces of healthy infants, were tested for resistance in a modified gastric juice *in vitro*, before being applied in *in vivo* tests. These isolates were exposed for 7 hours in the modified gastric juice (added with pepsin, pancreatin, and NaDC) with various pH of 2, 3, 4, or 8. Isolates of FBB that showed the most resistant properties in this test was identified by applying molecular method or by sequencing its 16S rDNA. In this test, the FBB isolates showed various degree of resistance to the modified gastric juice conditions. FBB72 was found to be more resistant than the two other isolates. This isolate appeared to have the ability to reach colon (viable when reach colon), although its density was very low (10⁴ CFU/ml and 10³ CFU/ml at pH 4 and 3, respectively). Based on its 16s rDNA nucleotide sequence, this FBB72 was found to be closely related to *Lactobacillus rhamnosus* GG ATTCC53103 with 99% similarity.

Keywords: Probiotic, Lactobacillus spp. FBB, Gactric Juice, Identification 16S rDNA

ABSTRAK

Telah dilakukan penelitian tentang uji ketahanan *Lactobacillus* spp. FBB (isolat 60, 72, dan 75), yang diisolasi dari feses bayi sehat, pada simulasi saluran pencernaan bagian atas sebelum diaplikasikan secara *in vivo*. Dalam penelitian ini *Lactobacillus* spp. FBB direndam selama 7 jam dalam cairan *gastric juice* (yang telah ditambah enzim pepsin dan pankreatin serta garam empedu atau NaDC) dengan pH 2, 3, 4 dan 8. Isolat yang menunjukkan sifat paling tahan dalam uji simulasi *gastric juice* diidentifikasi dengan metode molekuler. Hasil penelitian menunjukkan bahwa *Lactobacillus* spp. FBB (isolat 60, 72, 75) menunjukkan tingkat ketahanan yang berbeda pada simulasi saluran pencernaan bagian atas. Isolat FBB72 merupakan isolat yang paling tahan terhadap kondisi saluran pencernaan bagian atas jika dibandingkan dengan isolat FBB60 dan FBB75. Dalam uji ini strain FBB72 tampaknya mampu mencapai kolon dalam keadaan hidup, walaupun jumlahnya sangat kecil, yaitu sebesar 10⁴ CFU/ml dan 10³ CFU/ml berturut-turut pada pH 4 dan pH 3. Hasil identifikasi menunjukkan bahwa isolat ini berkerabat sangat dekat dengan *Lactobacillus rhamnosus* GG ATTCC53103 berdasarkan pada kesamaan urutan nukleotida 16S rDNAnya sebesar 99%.

Kata Kunci: Probiotik, Lactobacillus spp. FBB, Gactric Juice, Identifikasi 16S rDNA

PENDAHULUAN

merupakan mikro-**T**robiotik oganisme non patogen yang dapat memberikan dampak positif bagi kesehatan inangnya jika dikonsumsi dalam jumlah yang cukup (Schrezenmeir and de Vrese, 2001). Penggunaan bakteri menguntungkan sebagai agen probiotik telah berkembang dengan pesat. Salah satu kelompok bakteri yang banyak digunakan sebagai probiotik adalah kelompok bakteri asam laktat (BAL). Menurut Victor and Heldman (2001), BAL khususnya Lactobacillus termasuk kelompok bakteri yang tidak berbahaya bagi manusia dan memenuhi status GRAS (Generally Recognized As Safe). Lactobacillus juga merupakan salah satu flora normal di dalam usus, sehingga jika digunakan sebagai agen probiotik bakteri ini bersifat resisten terhadap kondisi ekstrim saluran pencernaan bagian atas, sehingga dapat mencapai dan mengkolonisasi saluran pencernaan bagian bawah. Keberadaan BAL dalam saluran pencernaan akan menjaga keseimbangan mikroflora usus dengan cara menghambat pertumbuhan bakteri patogen, seperti Escherichia coli dan Salmonella sp. (Jacobson et al., 1999).

Dalam pengembangan probiotik, isolat BAL harus menunjukkan sifat-sifat resisten terhadap kondisi pH rendah dan kadar NaDC tinggi (Saarela et al., 2000). Untuk alasan keamanan, BAL yang akan dikembangkan tidak boleh menunjukkan aktivitasbiotranformasi asam kolat menjadi asam deoksikolat (Sujaya et al., 2008a). Pada penelitian sebelumnya, Uni (2012) berhasil mengisolasi sebanyak 21 Lactobacillus spp. (isolat FBB) dari feses bayi sehat. Beberapa isolat tersebut (isolat FBB 60, 72, dan 75) mampu bertahan hidup pada lingkungan pH 2 dan NaDC dengan kadar 0,4 mM. Selain itu, isolat-isolat tersebut juga dapat

menghambat pertumbuhan beberapa bakteri patogen, seperti *Escherechia coli, Salmonella thypi* dan *Stapylococcus aureus* (Sintyadewi, 2012).

Untuk mengetahui apakah isolatisolat tersebut mampu melewati kondisi saluran pencernaan bagian atas yang kondisinya sangat ekstrim, maka dilakukan penelitian lebih lanjut secara *in vitro* dengan cara memaparkan isolat-isolat tersebut pada cairan *gastric juice* (GJ) yang telah

ditambahkan dengan enzim pepsin dan pankreatin serta garam empedu dan pH nya dibuat bervariasi sesuai dengan nilai pH saluran pencernaan bagian atas. Isolat uji yang paling unggul pada uji ini diidentifikasi secara molekuler untuk mengetahui identitas definitif isolat tersebut.

METODE

Penyegaran isolat FBB 60, 72, 75 dari kultur stok

Sebanyak 100 µl *Lactobacillus* spp. (isolat FBB 60, 72, 75) diambil dari stok gliserol, dimasukkan ke dalam 5 ml MRS *broth*, dan diinkubasi selama 48 jam pada suhu 37°C. Pertumbuhan bakteri asam laktat ditandai dengan meningkatnya kekeruhan media MRS *broth* (Portugal *et al.*, 2006).

Uji Simulasi Saluran Pencernaan Bagian Atas

Modified gastric juice yang dipakai dalam uji ini berdasarkan pada komposisi yang dilaporkan oleh Fernadez et al. (2003). pH GJ ini diatur sedemikian rupa sehingga diperoleh larutan GJ dengan pH 2, 3, 4 atau pH 8 dan disterilisasi sebelum digunakan dalam uji simulasi gastric juice. Bakteri asam laktat yang diuji, mula-mula ditumbuhkan dalam 5 ml MRS broth,

diinkubasi selama 24 jam, kemudian sebanyak 1 ml suspensi ini disentrifugasi selama 5 menit pada kecepatan 5000 rpm. Selanjutnya, massa sel dicuci dengan 500 µl air steril, disentrifugasi kembali sebanyak 2 kali sehingga didapatkan massa sel yang tidak bercampur dengan media, dan massa sel yang diperoleh ditambahkan dengan 500 µl larutan salin. Kemudian, sebanyak masing-masing 50 µl kultur ini ditambahkan ke dalam 1 ml larutan GJ (gastric juice) pH 2, pH 3, dan pH 4, yang masing-masing ditambahkan 7,5 µl pepsin kemudian divortex dan dishaker selama 1,5 jam pada kecepatan 120 rpm (sebelum di shaker dan ditambahkan dengan larutan GJ, terlebih dahulu ditanam pada MRS agar dengan metode sebar (10⁻⁵, 10⁻⁶, 10⁻⁷), dan diinokulasi dalam MRS broth pH netral untuk perlakuan 0 jam kemudian diinkubasi pada kondisi aerob selama 8 jam dan 24 jam). Setelah itu dishaker kembali selama 1,5 jam, kemudian dikultur sebanyak 100 µl pada medium MRS agar (10⁻³, 10⁻⁴, 10⁻⁵), sebanyak 50 μl dinokulasi pada MRS broth pH netral, dan diinkubasi selama 8 jam dan 24 jam. Sisa kultur di shaker kembali selama 3 jam dan disebar pada MRS agar (10⁻³, 10⁻⁴, 10⁻⁵) serta diinokulasikan sebanyak 50 µl pada MRS broth pH netral. Sisa kultur dilakukan pencucian sel dengan larutan salin. Massa sel yang diperoleh ditambahkan dengan 200 µl salin, kemudian dipipet sebanyak 50 µl dan ditambahkan masing-masing 1 ml larutan GJ pH 8, 10 µl NaDCA dan 7,5 µl pankreatin kemudian divortex dan dishaker selama 4 jam. Setelah 4 jam, sel dicuci dengan 300 µl larutan salin kemudian massa sel yang didapat ditambahkan dengan 300 µl larutan salin. Sel ditanam pada media MRS agar dengan metode sebar (10⁻², 10⁻³, 10⁻⁴) dan diinokulasikan pada MRS broth pH netral kemudian diinkubasi selama 8 jam dan

24 jam. *Optical density* diukur dengan spektofotometer pada panjang gelombang 660nm dan koloni yang tumbuh pada MRS agar dihitung berdasarkan tingkat pengencerannya (Fernadez *et al.*, 2003).

Identifikasi molekuler isolat FBB72

Identifikasi molekuler isolat FBB72 yang diawali dengan isolasi genomik DNA dan dilanjutkan dengan amplifikasi 16S rDNA dengan menggunakan primer 27F&520R, 357F&777R, 703F&1400R, 920F&1492R dan analisis urutan basa nukelotida dari 16S rDNA ini dilakukan menggunakan metode seperti yang dilaporkan berturut-turut oleh NucleoSpin Tissue (2010); Sambrook and Russel (2001); dan Applied Biosystem (2002).

HASIL DAN PEMBAHASAN

Ketahanan *Lactobacillus* spp. FBB pada Kondisi Saluran Pencernaan Bagian Atas

Uji simulasi saluran pencernaan bagian atas dilakukan selama 7 jam disesuaikan dengan perjalanan makanan menuju usus, dengan alokasi waktu selama 3 jam berada di lambung dan 4 jam berada di usus. Uji simulasi ini bertujuan untuk mengetahui apakah isolat uji dapat bertahan hidup setelah melewati saluran pencernaan. Dari 3 isolat yang diuji, diperoleh 2 isolat (FBB72 dan FBB75) mampu tumbuh pada MRS broth pH netral setelah terpapar pada model cairan lambung dan usus pH 2, 3, dan 4 (Tabel 1 dan Gambar 1, 2, dan 3). Dalam uji ini, isolat FBB72 menunjukkan sifat lebih tahan daripada FBB75. Dalam uji ini isolat FBB72 mampu mencapai kolon dalam keadaan hidup meskipun jumlahnya sangat kecil, yaitu sebesar 104 CFU/ml dan 103 CFU/ml berturut-turut pada pH 4 dan pH 3 (Tabel 2).

Waupun diisolasi dari sumber

yang sama, isolat-isolat FBB yang diuji pada penelitian ini memiliki ketahanan yang berbeda dalam uji simulasi saluran pencernaan bagian atas (Gambar 1, 2 dan 3). Tampak jelas pada Gambar 2. bahwa isolat FBB72 memiliki kemampuan yang lebih baik jika dibandingkan dengan isolat lainnya dalam uji ini. Kerapatan sel isolat mengalami penurunan dari 2,6x109 sel/ml (sebelum terpapar dengan gastric juice) menjadi 1x10⁴ sel/ml (setelah berada di dalam usus). Perbedaan karakteristik antar isolat BAL yang dipakai pada penelitian ini diduga disebabkan oleh variasi genetik antar Isolat, seperti yang dilaporkan oleh Chou and Weimer (2000). Perbedaan struktur genetik antar isolat dapat disebabkan oleh proses-proses, seperti transformasi (Lodish et al., 2000), transduksi (Pasternak and Bernard, 2003), atau konyugasi (Sambrook and Russel, 2001).

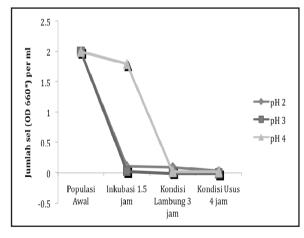
Untuk mengimbangi kemungkinan penurunan bakteri probiotik di sepanjang pencernaan, saluran probiotik dikonsumsi setiap hari harus memiliki kerapatan sel sebesar 108 sel/g (Shah, 2007). Kerapatan populasi akhir dari FBB72 setelah simulasi saluran pencernaan bagian atas ini diharapkan dapat berkembangbiak dan menjadi predominan di dalam saluran pencernaan, sehingga isolat ini dapat memberikan dampak positif bagi kesehatan inangnya. Penurunan kerapatan sel isolat FBB72 yang teramati pada penelitian ini disebabkan oleh kondisi ekstrim yang dilalui oleh bakteri ini dalam perjalanannya disepanjang saluran pencernaan. Sebelum sampai di usus halus, sel-sel bakteri ini terpapar terlebih dahulu oleh kondisi pH rendah dan enzim lambung. Setelah itu sel akan terpapar oleh garam empedu dan enzim-enzim hidrolitik yang dilepas ke dalam usus halus oleh hati dan pankreas. Menurut Bezkorovainy (2006), pH rendah,

garam empedu dan enzim-enzim hidrolitik bersifat bakterisidal bagi mikroorganisme. Pada penelitian ini, populasi isolat FBB72 yang menurun saat dipaparkan pH rendah selama 3 jam, kemungkinan disebabkan oleh lisisnya sel isolat tersebut. Menurut Hong et al. (2005), bila sel bakteri berada dalam kondisi yang sangat asam dalam waktu yang cukup lama, maka membran sel dapat mengalami kerusakan dan berakibat pada hilangnya komponen-komponen intraseluler dari dalam sel. Hal ini dapat menyebabkan kematian sel bakteri. Agar dapat bertahan hidup pada lingkungan pH rendah, maka isolat ini harus mampu mempertahankan lingkungan internalnya selalu lebih tinggi daripada pH eksternalnya. Hal ini dilakukan dengan cara mencegah masuknya ion H⁺ dalam jumlah berlebih dan mengeluarkan sebanyak mungkin ion H+ yang ada di dalam sitoplasmanya (Siegumfeldt et al., 2000).

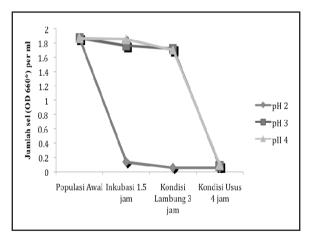
Pada penelitian ini, sifat resisten ditunjukkan oleh isolat FBB72 kemungkinan disebabkan oleh sistem membran isolat ini lebih tahan terhadap kebocoran sel setelah terpapar pH rendah, selain kemampuannya mengatur internalnya lebih tinggi daripada pH eksternalnya. Menurut Siegumfeldt et al. (2000), komponen membran yang menyebabkan suatu isolat lebih resisten terhadap pH rendah adalah asam lemak dan protein. Menurut Susanti et al. (2007), komponen lipid yang lebih dominan pada membran bakteri Gram positif menjadi bagian penting untuk menjaga struktur membran dalam menurunkan kebocoran sel yang disebabkan oleh garam empedu. Selain itu, menurut Smet et al. (1995) beberapa bakteri asam laktat berbentuk batang seperti Lactobacillus memiliki enzim bile salt hydrolase (BSH) berfungsi untuk menghidrolisis garam

empedu. Enzim ini mampu mengubah struktur fisik dan kimia garam empedu menjadi struktur baru yang lebih sederhana dan tidak bersifat racun bagi bakteri asam laktat (Evanikastri, 2003). Sifat resisten terhadap garam empedu yang ditunjukkan

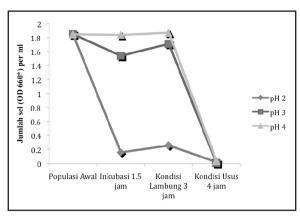
oleh isolat FBB72 kemungkinan disebabkan oleh hal-hal tersebut di atas.


Identifikasi molekuler isolat FBB72

Dalam proses pengembangan isolat BAL sebagai probiotik baru, identitas


Tabel 1. Ketahanan *Lactobacillus* spp. FBB Terhadap pH dan Enzim Pencernaan Setelah Diinkubasi Selama 8 Jam

	OD660nm ^(*)										
Strain	Populasi	1,5 Jam			3 Jam			4 Jam			
	awal	pH 2	рН 3	pH 4	pH 2	рН 3	pH 4	pH 2	рН 3	pH 4	
60	1,550	<0,01	<0,01	0,12	<0,01	<0,01	0,019	0,021	<0,01	0,012	
72	1,294	0,05	0,19	0,99	0,050	0,050	0,219	0,045	0,056	0,045	
75	1,308	0,01	0,01	0,48	0,015	0,038	0,871	<0,01	0,023	0,020	


(*) OD_{660nm} diukur setelah sel bakteri direndam selama 3 jam dalam cairan *gastric juice* yang mengandung 7,5 μl pepsin 0,1% pH 2,3 dan 4 kemudian dilanjutkan direndam dalam cairan *gastric juice* yang mengandung 7,5 μl pankreatin 0,1% dan 0,2 μl NaDC 0,4 mM pH 8 selama 4 jam, kemudian diinokulasi pada MRS *broth* pH netral. Pertumbuhan dianggap positif apabila OD_{660nm} ≥ 0,01

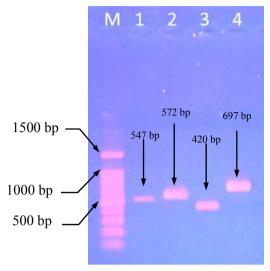
Gambar 1. Ketahanan isolat FBB60 terhadap pH dan enzim pencernaan setelah diinkubasi selama 24 jam. (*) OD_{660nm} diukur setelah sel bakteri direndam selama 1,5 jam dan 3 jam dalam cairan *gastric juice* yang mengandung 7,5 μ l pepsin 0,1% pH 2,3 dan 4 kemudian dilanjutkan direndam dalam cairan *gastric juice* yang mengandung 7,5 μ l pankreatin 0,1% dan 0,2 μ l NaDC 0,4 mM pH 8 selama 4 jam, kemudian diinokulasi pada MRS *broth* pH netral diinkubasi selama 24 jam. Pertumbuhan dianggap positif apabila OD_{660nm} \geq 0,01

Gambar 2. Ketahanan Isolat FBB72 terhadap pH dan enzim pencernaan setelah diinkubasi selama 24 jam. (*) OD_{660nm} diukur setelah sel bakteri direndam selama 1,5 jam dan 3 jam dalam cairan *gastric juice* yang mengandung 7,5 μ l pepsin 0,1% pH 2,3 dan 4 kemudian dilanjutkan direndam dalam cairan *gastric juice* yang mengandung 7,5 μ l pankreatin 0,1% dan 0,2 μ l NaDC 0,4 mM pH 8 selama 4 jam, kemudian diinokulasi pada MRS *broth* pH netral diinkubasi selama 24 jam. Pertumbuhan dianggap positif apabila OD_{660nm} ≥ 0,01

Gambar 3. Ketahanan isolat FBB75 terhadap pH dan enzim pencernaan setelah diinkubasi selama 24 jam. (*) OD_{660nm} diukur setelah sel bakteri direndam selama 1,5 jam dan 3 jam dalam cairan *gastric juice* yang mengandung 7,5 μ l pepsin 0,1% pH 2,3 dan 4 kemudian dilanjutkan direndam dalam cairan *gastric juice* yang mengandung 7,5 μ l pankreatin 0,1% dan 0,2 μ l NaDC 0,4 mM pH 8 selama 4 jam, kemudian diinokulasi pada MRS *broth* pH netral diinkubasi selama 24 jam. Pertumbuhan dianggap positif apabila OD_{660nm} ≥ 0,01

definitif isolat tersebut harus terdefinisi secara jelas. Hasil amplifikasi deret basa pengkode 16S rDNA dengan PCR (*Polymerase Chain Reaction*) sebanyak 30 siklus ditunjukkan pada Gambar 4. Gambar 4. secara jelas menunjukkan bahwa setiap pasangan primer yang berbeda memberikan hasil *band* yang berbeda-beda pula. Dalam Gambar 4. tampak bahwa primer-primer 27F, 357F, 703F, dan 920F membentuk *band-band*

dengan ukuran pasang basa yang berbeda. Hasil sekuensing menunjukkan bahwa FBB72 memiliki kekerabatan terdekat dengan L. rhamnosus GG ATCC53103, L. rhamnosus NBRC3425, dan L. rhamnosus JCM1136 dengan persentase similaritas masing-masing 99% (Tabel 3). Menurut Clarridge (2004) similaritas sekuen 16S rDNA bakteri sebesar lebih besar daripada 94% memberikan informasi bahwa isolat tersebut masuk dalam satu spesies. Persentase similaritas yang sama dari FBB72 dengan ketiga strain L. rhamnosus tersebut disebabkan oleh pensejajaran deret basa FBB72 dimulai dari basa no. 1 yang disejajarkan dengan L. rhamnosus GG ATCC53103 yang dimulai dari deret basa no. 59 dan dengan L. rhamnosus NBRC3425 ataupun L. rhamnosus JCM1136 dimulai dari deret basa no. 39. Hasil pensejajaran deret basa dari masing-masing *L. rhamnosus* tersebut menunjukkan perbedaan nomor deret basa yang berbeda dari masingmasing strain terhadap FBB72. Berdasarkan perbedaan pada deret basanya, FBB72 memiliki kekerabatan terdekat dengan L. rhamnosus NBRC3425, namun berdasarkan skor tertinggi (Tabel 3), FBB72 memiliki kekerabatan terdekat dengan L. rhamnosus GG ATCC53103. Oleh karena itu, dapat


Tabel 2. Populasi Isolat FBB Dalam Perjalanannya Di Sepanjang Saluran Pencernaan Bagian Atas Pada Uji Simulasi *Gastric Juice*

Strain	Populasi isolat CFU/ml *)											
(FBB)	Populasi	i 1,5 Jam			3 Jam			4 Jam				
,	awal	pH 2	pH 3	pH 4	pH 2	pH 3	pH 4	pH 2	pH 3	pH 4		
60	1,3x10 ⁸	2x10 ⁵	4x10 ⁴	3x10 ⁷	5x10 ⁴	0	2,4x10 ⁵	0	0	0		
72	2,6x10 ⁹	0	3x10 ⁷	4x10 ⁷	0	2,7x10 ⁷	2,9x10 ⁷	0	1x10 ³	1x10 ⁴		
75	3,8x10 ⁸	0	2x10 ⁶	4x10 ⁷	0	6,8x10 ⁷	5,8x10 ⁷	0	0	1x10 ⁴		

dipastikan bahwa isolat FBB72 merupakan *L. rhamnosus* GG ATCC53103.

Hubungan kekerabatan pada pohon filogeni menunjukkan bahwa FBB72 termasuk dalam *rhamnosus group* yang memiliki kekerabatan terdekat dengan *L. rhamnosus* dengan nilai *bootstrap* 99% (Gambar 5.). Menurut Horrike (2009), nilai *bootstrap* 95% atau lebih mempunyai arti bahwa topologi percabangan tersebut sangat akurat, konsisten atau tidak akan berubah walaupun dilakukan dengan metode penyusunan pohon filogenetik lainnya.

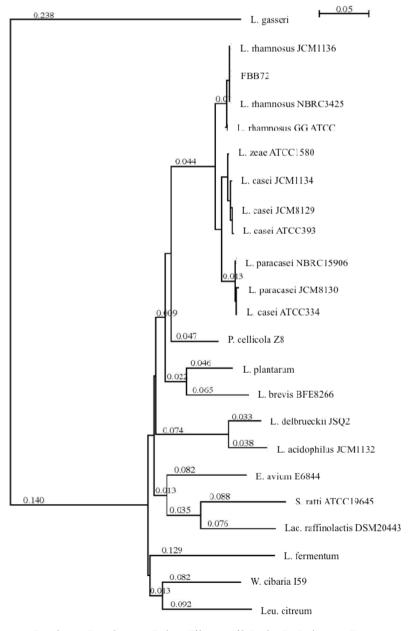
Kekerabatan yang sangat dekat antara isolat FBB72 dengan L. rahmnosus GG ATCC53103 disebabkan oleh kedua isolat tersebut diisolasi dari sumber yang sama yaitu feses manusia. Menurut Lee and Salminen (2009) isolat L. rhamnosus GG diisolasi dari feses manusia pada tahun 1983 oleh Barry R. Goldin dan Sherwood L. Gorbach. Hal ini sesuai dengan yang dilaporkan oleh Herich and Levkut (2002), yang menyatakan bahwa Lactobacillus rhamnosus merupakan salah satu flora normal saluran pencernaan manusia. Menurut Matsuda et al. (1992), Lactobacillus rhamnosus NBRC3425 merupakan sinonim dari L. rhamnosus JCM1136 tetapi dikoleksi oleh badan koleksi kultur yang berbeda. Sebelum dikoleksi oleh NBRC (NITE Biological Resource Center), Lactobacillus rhamnosus NBRC3425 dikoleksi oleh IFO dengan nama strain IFO3425 dan oleh ATCC dengan nama strain ATCC7469. Selain dari saluran pencernaan, Lactobacillus rhamnosus juga banyak diisolasi dari sumber lain, seperti susu kuda liar (Sujaya et al., 2008b), susu manusia (Nuraida et al., 2007), atau makanan terfermentasi (Putri et al., 2012). Di dalam saluran pencernaan, Lactobacillus rhamnosus berperan dalam mempertahankan kondisi asam rendah) saluran pencernaan (Hardiningsih

Gambar 4. Hasil Amplifikasi Deret Basa Pengkode 16S rDNA *isolat*. FBB72. M (marker); 1. Primer 27F dan 520R; 2. Primer 920F dan 1492R; 3. Primer 357F dan 777R; 4. 703F dan 1400R

et al., 2005), meningkatkan sistem imun, terutama untuk melawan patogen yang ada dalam saluran pencernaan dan saluran kencing (Isolauri and Salminen, 2008).

SIMPULAN DAN SARAN

Simpulan


Pada uji simulasi saluran pencernaan bagian atas, isolat FBB72 tampak lebih tahan daripada FBB60 dan FBB75. Isolat FBB72 ini mampu mencapai kolon dalam keadaan hidup meskipun jumlahnya sangat kecil, yaitu sebesar 104 CFU/ml dan 10³ CFU/ml pada berturut-turut pH 4 dan pH 3. Hasil identifikasi dengan menganalisis deret basa pengkode 16S rDNA menunjukkan bahwa BAL isolat FBB72 yang diisolasi dari feses bayi ini berkerabat dekat dengan Lactobacillus rhamnosus GG ATCC53103 dengan homologi sebesar 99%. Berdasarkan hasil penelitian yang dilakukan, L. rhamnosus FBB72 dapat dikembangkan lebih lanjut untuk pengembangan probiotik lokal.

Saran

Penelitian lanjutan yang perlu

Tabel 3. Hasil BLAST-N Complete Sequence FBB72

Deskripsi	Similarity	Accesion
L. rhamnosus GG ATCC53103	99% (1462/1465)	NR.102778.1
L. rhamnosus JCM1136	99% (1459/1465)	NR. 043408.1
L. rhamnosus NBRC3425	99% (1455/1457)	NR.113321.1

Gambar 5. Dendogram Pohon Filogenetik Isolat BAL dengan Bootstrap

dilakukan pada isolat FBB72 adalah uji *in vivo* pada hewan coba dan pada manusia untuk mengetahui pengaruh dan dosis yang tepat. Selain itu, penelitian ke arah pengembangan produk pangan juga perlu dilakukan.

UCAPAN TERIMAKASIH

Penulis mengucapkan terima kasih kepada LPPM (Lembaga Penelitian dan Pengabdian Kepada Masyarakat) Universitas Udayana yang telah membantu secara finansial melalui kontrak dengan nomor 174.11/UN14.2/PNL.03.00/2013, tertanggal 16 Mei 2013. Selain itu, ucapan terima kasih penulis juga ditujukan kepada UPT Lab. Terpadu Biosain dan Bioteknologi Universitas Udayana atas fasilitas yang diberikan selama penelitian ini berlangsung.

DAFTAR PUSTAKA

- Applied Biosystems. (2002). *Protocol BigDye Terminator v3.1 Cycle Sequencing Kit.* California, USA.
- Bezkorovainy, A. (2006). Probiotics: Determinants of Survival and Growth in the Gut. *American Journal of Clinical Nutrition*, 72: 399-405.
- Chou, L.Z and Weimer, B. (2000). Isolation and Characterization of Acid and Bile Tolerant Isolates from Strains of Lactobacillus acidophilus. Journal of Dairy Science, 82: 23-31.
- Clarridge, J.E. (2004). Impact of 16S rRNA Gene Sequence Analysis for Identification of Bacteria on Clinical Microbiology and Infectious Diseases. *Clinical Microbiology Review*, 17: 840-862.
- Evanikastri. (2003). "Isolasi dan Karakterisasi Bakteri Asam Laktat dari Sampel Klinis yang Berpotensi

- sebagai Probiotik" (*tesis*). Bogor : Institut Pertanian Bogor.
- Fernadez, M. F., Boris, S. and Barbes, C. (2003). Probiotic Properties of Human Lactobacilli Strains to be Used in the Gastrointestinal Tract. *Journal of Applied Microbiology*, 94: 449-455.
- Hardiningsih, R., R.N.R. Napitupulu. and T. Yulinery. (2005). Isolasi dan uji Resistensi Beberapa Isolat *Lactobacillus* pada pH Rendah. *Biodiversitas*, 7(1): 15-17.
- Herich, P. and Levkut, M. (2002). Lactid Acid Bacteria, Probiotics and Immune System. *Veterinary Medicine – Czech*, 47(6): 169-180.
- Hong, H.A., Duc, L.H. and Cutting, S.M. (2005). The Use of Bacterial Spore Formers as Probiotics. *FEMS Microbiology Reviews*, 29: 813-835.
- Horiike, T. (2009). Phylogenetic Construction of 17 Bacterial Phyla by New Method and Carefully Selected Orthologs. *Gene*, 429: 59-64.
- Isolauri, E. and Salminen, S. (2008).

 Probiotics: Use in Allergic Disorders:
 A Nutrition, Allergy, Mucosal Immunology, and Intestinal Microbiota. *Journal of Clinical Gastroenterology*, 42(2): 91-96.
- Jacobsen, C. N., V.R. Nielsen., A.E. Hayford., P.I. Moller., K.F. Michaelsen., A.P. Erregard., B. Sandstrom., M. Tyede and M. Jacobsen. (1999). Screening of Probiotic Activities of 47 Strains of *Lactobacillus* spp. by *invitro* Techniques and Evaluation of the Colonization of Five Selected Strains Human. *Applied and Environmental Microbiology*, 65: 4949-4956.
- Lee, K.Y. and Salminen, S. (2009). *Handbook* of Probiotics & Prebiotics. 2nd Edition. New Jersey: John Wiley and Sons. 177-540.
- Lodish, H., Arnold, B., Lawrence, Z., Paul,

- M. and David, B. (2000). *Molecular Cell Biology*. New York: Wh Freeman Company.
- NucleoSpin Tissue. (2010). *User Manual, Genomic DNA from tissue*. Rev 11. Germany: Macherey-Nagel (MN) Inc.
- Matsuda, S., Miyazaki, T., Matsumoto, Y., Ohba, R., Teramoto, Y., Ohta, N. & Ueda, S. (1992). Hydrolysis of Isoflavones in Soybean Cooked Syrup by Lactobacillus casei subsp. rhamnosus IFO 3425. Journal of Fermentation and Bioengineering, 74: 301-304.
- Nuraida, L., Susanti., Hartanti, A.W. (2007). Lactic Acid Bacteria and Bifidobacteria Profile of Breast Milk and Their Potency as Probiotics. *Asean Food Conference*. Kuala Lumpur, Malaysia.
- Pasternak, J.J. and Bernard, R.G. (2003). Molecular Biotechnology: Principle and Appplication of Recombinant DNA. Washington DC: ASM Press.
- Portugal, L.R., J.L. Goncalves., L.R. Fernandes., H.P.S. Silva., R.M.E. Arantes., J.R. Nicoli., L.Q. Veira and J.I.A. Retes. (2006). Effect of *Lactobacillus delbrueckii* on Cholesterol Metabolism in Germ Free Mice and on Antherogenesis in Apoliprotein E Knock Out Mice. *Brazilian Journal of Medical and Biological Research*, 39: 629-935.
- Putri, W.D.R., Haryadi., D.W. Marseno. and M.N. Cahyanto. (2012). Isolasi dan Karakterisasi Bakteri Asam Laktat Amilolitik selama Fermentasi Growol, Makanan Tradisional Indonesia. *Jurnal Teknologi Pertanian*, 13(1): 52-60.
- Saarela, M., G. Mogensen., R. Fonden., J. Matto and T. Mattila-Sandholm. (2000). Probiotic Bacteria: Safety, Functional and Technological

- Properties. *Journal of Biotechnology*, 84(3): 197-215.
- Sambrook, J. and Russell, D.W. (2001). *Molecular Cloning: A Laboratory Manual.* 3th Edition. New York: Cold

 Spring Harbor Laboratory Press.
- Schrezenmeir, J. and de Vrese, M. (2001). Probiotics, Prebiotics and Synbiotics Approaching and Definition. *American Journal of Clinical Nutrition*, 73: 361-364.
- Shah, N. P. (2007). Functional cultures and health benefits. *International Dairy Journal* 17: 1262-1277.
- Siegumfeldt, H., Rechninger, B.K., Jacobsen, M. (2000). Dynamic Changes of Intracellular pH in Individual Lactid Acid Bacterium Cells in Response to a Rapid Drop in Extracellular pH. Applied and Environmental Microbiology, 66: 2330-2335.
- Sintyadewi, P.R. (2012). "Aktivitas Lactobacillus spp. Isolat Feses Bayi dalam Menghambat Bakteri Patogen Saluran Pencernaan dan Ketahanannya terhadap Antibiotika" (skripsi). Denpasar: Universitas Udayana. Tidak dipublikasikan.
- Smet, L.D., L. yan Hoorde., M.V. Woestyne.,
 H. Christiaens., W. Verstraete. (1995).
 Significans of Bile Salt Hydrolytic
 Activities of Lactobacilli. *Journal of Applied Bacteriology*, 79: 292-301.
- Sujaya, I.N., N.M.U. Dwipayanti., N.L.P. Suariani., N.P. Widarini., K.A. Nocianitri and N.W. Nursini. (2008a). Potensi *Lactobacillus* spp. Isolat Susu Kuda Sumbawa sebagai Probiotik. *Jurnal Veteriner*, 9(1): 33-40.
- Sujaya, I.N., Y. Ramona., N.P. Widarini., N.P. Suariani., N.M.U Dwipayanti., K.A. Nocianitri and N.W. Nursini. (2008b). Isolasi dan Karakterisasi Bakteri Asam Laktat Susu Kuda

- Sumbawa. *Jurnal Veteriner*, 9(2): 52-59.
- Susanti, I., Retno, W.K., Fatim, I. (2007). Uji Sifat Probiotik Bakteri Asam Laktat sebagai Kandidat Bahan Pangan Fungsional. *Jurnal Teknologi dan Industri Pangan*, 18(2): 91-93
- Uni, I.A.S.S.M. 2012. "Isolasi Bakteri Asam Laktat Penghidrolisis Garam
- Empedu dari Feses Bayi dan Uji Ketahanannya terhadap pH Rendah untuk Pengembangan Probiotik" (*skripsi*). Denpasar: Universitas Udayana. Tidak dipublikasikan.
- Victor, R.P. and Heldman, D.R. 2001. Introduction to Food Engineering. 3rd Edition. London: Academic Press.