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ABSTRACT 

The study location of landslide is in Hokkaido, Japan which occurred due to the Iburi 

Earthquake 2018. In this study the landslide has been estimated by the fully Polarimetric SAR 

(Pol-SAR) technique based on ALOS-2/PALSAR-2 data using the Yamaguchi’s decomposition. 

The Yamaguchi's decomposition is proposed by Yoshio Yamaguchi et.al. The data has been 

analyzed using the deep learning process with SegNet architecture with color composite. In this 

research, the performance of SegNet is fast and efficient in memory usage. However, the result 

is not good, based on the Intersection over Union (IoU) evaluation obtained the lowest value is 

0.0515 and the highest value is 0.1483. That is because of difficulty to make training datasets 

and of a small number of datasets. The greater difference between accuracy and loss graph along 

with higher epochs represents overfitting. The overfitting can be caused by the limited amount of 

training data and failure of the network to generalize the feature set over the training images. 

Keywords:  ALOS-2/PALSAR-2, Fully Polarimetric SAR, Yamaguchi Decomposition, 

SegNet, Landslide 

1. INTRODUCTION 

The study of landslide location is in 

Hokkaido, Japan, which occurred due to the 

Iburi Earthquake 2018. The Earthquake 

occurred on September 6th, 2018 at 03:08 

JST (local time) with magnitude 6.7. The 

epicenter located at 42.72° North, and 142.0° 

East, where Atsuma-cho was registered as an 

area that has maximum intensity of 7. This 

earthquake induced landslide in several areas 

(Yamagishi and Yamazaki, 2018). 

In this study an analysis was carried out 

using satellite images of ALOS-2/PALSAR-2. 

ALOS-2/PALSAR-2 is a satellite image of 

Synthetic Aperture Radar (SAR). SAR 

synthetically increases the antenna's size or 

aperture to increase the azimuth resolution 

through the same pulse compression 

technique as adopted for range direction. 

Synthetic aperture processing is a complicated 

data processing of received signals and phases 

from moving targets with a small antenna, the 

effect of which is to should be theoretically 

converted to the effect of a large antenna, that 

is a synthetic aperture length (Japan 

Association of Remote Sensing, 1996). 

SAR has the ability in all weather and 

also able to work during the day and night, 

the superiority of this SAR is due to the use of 

microwaves that can heal clouds and rain to a 

certain degree.SAR applications have been 

applied in various fields, depending on their 

objectives, such as in the field of 

oceanography, agriculture, geology, disaster 

mitigation, and so on.In the past few years, 

the use of the Polarimetric SAR (Pol-SAR) 

system has increased which is applied to 

aircraft or satellites, Pol-SAR has become one 

of the attention of researchers to be 

developed. 

Fully Pol-SAR data has a variety of 

information when compared with single or 

dual polarization SAR data, in terms of 

electromagnetic scattering characteristics to 

the intended target (Shibayama, T., et.al., 

2015).Fully Pol-SAR data provides 

information in the form of a field scattering 

matrix, a scattering matrix consisting of 
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magnitude and phase on four polarizations 

(HH, HV, VH, VV) sent and received 

horizontally (H) and vertically (V) by the 

radar antenna.Various methods have been 

developed previously to obtain information on 

the surface characteristics of the earth from 

Fully Pol-SAR data. In 1997 Cloude and 

Pottier used coherence or covariance matrices 

to make eigenvector decomposition. 

Yamaguchi et.al. in 2005 developed an 

approach for four components, called 

Yamaguchi's Decomposition. Satellite 

observations were made on September 8, 

2018.The Satellite observation was in 

September 8th, 2018. 

Here we try to apply Deep Learning 

with SegNet architecture to the 

fourcomponent Yamaguchi’s decomposition. 

Deep learning is part of the field of machine 

learning, more and more studied in various 

fields in the early 2010s.A few years after 

that, the application is growing, producing 

extraordinary things in solving the perception, 

such as the problem of seeing and hearing that 

is now starting like humans, seem natural and 

intuitive, which was previously impossible for 

a machine. (Chollet, 2018). 

Generally, Deep learning utilizes neural 

network architecture. Definition of "Deep" 

relates to the number of layers in the network 

to be used.Deep neural networks are inspired 

by the biological nervous system, use simple 

operating elements in parallel, and combine 

various layers for nonlinear processing 

(Mathworks, 2018). 

One of the popular algorithms for deep 

learning in images and videos is 

Convolutional Neural Networks (CNN). CNN 

is similar to other neural networks, consists of 

input and output layers, and also hidden 

layers (Mathworks, 2018). Many algorithms 

are developed based on CNN, for example, 

autoencoder, LeNet, AlexNet, VGG, 

GoogLeNet, ResNet, SegNet and other. 

There are two kind of CNN based on 

segmentation, first one is instance 

segmentation and second one is semantic 

segmentation. Instance segmentation 

identifies each object in an image (Watanabe 

and Wolf, 2019), whereas semantic 

segmentation identifies and classifies every 

pixel belong to an object in an image 

explained byGarcia-Garcia et.al. (2018). 

SegNet is a deep learning architecture, 

the function is for Semantic Segmentation as 

a labeler for each pixel image according to the 

class of the object that has been determined 

(Garcia-Garcia et al., 2018). The advantage of 

SegNet is that it can classify every pixel in the 

image, fast and efficient in memory usage. In 

starting, SegNet was used for self-driving cars 

(Badrinarayanan et al., 2017). However, we 

want to adopt this architecture for this 

research because of its advantages. 

2. METHODOLOGY 

2.1 ALOS-2/PALSAR-2 Observation 

The data observed by ALOS-

2/PALSAR-2 with level 1.1 SLC (SingleLook 

Complex) format is used to analyze landslides 

that occurred due to earthquakes in Hokkaido, 

Japan. The ALOS-2/PALSAR-2 is a SAR 

Satellite, which emits microwave and receives 

the reflection from an object to get 

information. ALOS-2/PALSAR-2is L-band 

satellite, which is does not affected by clouds 

and rains. The all-weather condition 

capability is suitable for monitoring disasters 

rapidly. In addition, L-band can reach to the 

ground partially with penetrating the canopy 

of vegetation to get information on the ground 

surface (JAXA, 2019).The earthquake 

occurred on 6September 2018 at 3:08 JST, 

with magnitude 6.7 and maximum intensity of 

7 at Atsuma-cho (Yamagishi and Yamazaki, 

2018). In Figure 1 shown the research 

location and in the Table 1 shown summary 

of ALOS-2/PALSAR-2 observation data. 
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Figure 1. 

Research location(Google Earth, 2019) 

Red rectangle: shape of Satellite ALOS-2 

Blue rectangle: cropping by Region of Interest (ROI) 

 

Table 1. Summary of ALOS-2/PALSAR-2 observation 

Observation 

mode 

Flight 

Direction 

Operation 

Mode 

Observation 

Direction 

Observation 

Date 

Full Polarimetry Ascending SM2 
Right-side 

observation 
August 8th, 2018 

 

2.2 Four-component Yamaguchi 

Decomposition Method 

The combination of coherent speckle 

noise and random vector scattering effects 

from the surface and volume in the SAR 

remote sensing application requires a 

multivariate statistical description. That 

matter used to identify the average or 

dominant scattering mechanism from the 

targets, as classification of the scattering data. 

The main purpose of target decomposition is: 

to break down the coherence matrix or 

covariance matrix into several independent 

matrices to represent scattering of the 

intended target. 

In its application there are two parts to 

target decomposition, namely, first, a 

coherent decomposition (Cameron, 1990; 

Krogager, 1990; Touzi et al. 2002) applies 

when one or two dominant scattering 

mechanisms are produced. This does not 

apply to the case of natural targets, moreover, 

the noise speckle is very influential on the 

coherent average. 

Second, incoherent decomposition, 

described as the use of statistics to produce 

finer scatter behavior. This method produces 

Huynen-based methods (Huynen, 1970), 

vector-based (Cloude, 1986; Cloude and 

Pottier, 1996) and model-based 

decomposition methods (Freeman and 

Durden, 1998; Yamaguchi, 2005). 

Model-based decomposition method 

with four scattering components proposed by 

Yamaguchi et al. (2005). The model is based 

on the Freeman-Durden model (Freeman and 

Durden, 1998), which is then expanded based 

on a certain degree of orientation in the case 

of vegetation and provides a helical 
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component in accordance with the symmetric 

case of non-reflection
* 0HH HVS S  

and 
* 0HV VVS S  

. 

 
Figure 1. Transmit and receive in SAR 

satellite system. 

H: horizontally; V: vertically 

 

Based on the transmit and receive in SAR 

satellite system in Figure 2.7, scattering 

matrix or Sinclair matrix of SAR satellite 

system can defined as:  
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The data set in the pixel area is expressed as a 

coherence matrix, as follows: 
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Where * denotes conjugation and <> denotes averaging. 

Thescattering power double-bounce (𝑃𝑑), based on the coherency matrix, is defined as: 

  2

11 33 1dP T T     (4) 

  2 2 21
2 1

2
d HH VV HVP S S S      (5) 

Scattering power volume (𝑃𝑣) is defined as: 

 33 234 4vP T T    (6) 

  
2

8 4v HV HV HH VVP S Im S S S    (7) 

Scattering power surface (𝑃𝑠) is defined as: 

  2
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And, scattering power helix (𝑃ℎ) is defined as: 
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Where:
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The Bragg coefficient hR
(horizontally) and vR

 (vertically)polarized wave, defined as: 
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where  is the incidence angle and r  is the constant of the relative dielectric of the surface.In 

Figure 2.8 is shown the characteristic of the four-component of Yamaguchi’s decomposition. 

Table 2 shown scattering mechanism and its correspondence to typical object. 

 

 

 
Figure 2. 

The scattering power of four component decomposition( Ps , Pd , Pv , and Ph ) 

(Yamaguchi, 2012;Saepuloh and Bakker, 2017) 

 

Table 2. Scattering mechanism and its correspondence to typical object (Yamaguchi, 2012). 

Scattering 

Type 
Typical objects Other candidates 

Double-

bounce 
Objects made by human 

Isolated trees, vegetation 

in row 

Volume Vegetations 
Edges that produce the cross polarized HV 

component 

Surface 
Bare soil surface, crop field, 

snow, volcano ashes 
Sea surface, water body 

Helix Circular polarization state No-specific condition 
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Figure 3.  

Flowchart of Yamaguchi’s decomposition (Yamaguchi et al., 2006). 

 

2.3 Architecture of SegNet 

The Deep convolutional neural network 

for semantic segmentation as known SegNet. 

Built from the Encoder-Decoder network 

which is the architecture implementation from 

VGG16 network with 13 convolutional 

layers. The encoder network function is to 

trainable segmentation engine, while decoder 

function for classification the pixel-

wise(Badrinarayanan et al., 2017). In Figure 

4. shown the architecture of SegNet.The main 

idea of SegNet is using max-pooling, it 

function is to keep greater value in the image 

and the function of up-sampling is up-samples 

image to higher scale(Chollet, 2018). In 

Figure 5 shown the example of max-pooling 

(a) and up-sampling (b). In Figure 6 shown 

flowchart to making datasets, (1) data from 

Yamaguchi’s decomposition as input; (2) 

generating composite of color from Pd as red,
Pv  as green, and Pv  as blue, Ph in this case 

is ignored; (3) color composite image; (4) 

cutting image with size 360x480 pixel for 

datasets, datasets divided into 60% (162) 

training, 20%(54) test, and 20% (54) 

validation datasets from total (270) of 

datasets; (5) Labelling datasets. 
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Figure 4. 

The illustration of the SegNet architecture. These is only convolutional, there are no fully 

connected layers. A decoder up-samples its input using the transferred pool indices 

from its encoder to produce a sparse feature map(s). It then performs convolution 

with a trainable filter bank to densify the feature map. The final decoder output 

feature maps are fed to a soft-max classifier for pixel-wise classification 

(Badrinarayanan et al., 2017). 

 

 

 

Figure 5.  

(a) Max-pooling: down-sampling with (2x2) filter; 

(b) Up-sampling with (2x2) filter(Chollet, 2018). 

(a) (b) 
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Figure 6. 

Flowchart to making datasets. 

 

3. RESULT AND DISCUSSION 

3.1 Experiments 

The first will explain the result of 

training data proses, in this case training data 

process with 100 epochs, the result shown in 

graph in Figure 7. The graph showing 

overfitting, this because little training data is 

available (Chollet, 2018). Result of the 

SegNet implemented in Fully Pol-SAR data 

shown in Figure 8. In the process to labeling 

dataset is quite difficult, because of some 

color is same, for example bare-soil, rice field 

(before planting or after harvest), and 

landslide occur. 
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Figure 7.  

Result of training process. (a) Model accuracy and (b) model loss. 

 

 
Figure 8. 

Estimation result of SegNet architecture in this research. 

Information:    

Landslide = [255,0,0]    Rural_area = [255,192,128]  

Bareland = [0,128,130]    Water_body = [0,255,255]  

Forest = [0,255,6]    Farming_area = [255,255,0]  

Ricefield = [0,9,255]    Unlabelled = [0,0,0]  

 

3.2 Evaluations 

The evaluation of result from the 

architecture implementation, using IoU. The 

IoU score is used as a standard for measuring 

performance on segmentation problems in an 

object.IoU measurement provides information 

on the similarity between the estimated area 

and the ground-truth for the object in the 

measured images(Rahman and Wang, 2016; 

Rezatofighi et al., 2019), the equation as 

bellow: 

A B I
IoU

A B U


 


 (14) 

where I and U denote the Intersection and 

Union respectively. 

Validation Image (SAR data with color composite) 

   

Estimation Image 

   

 

(b) (a) 
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In Table 3 shows the percentage of IoU 

from Figure 9, the result is quite god, it 

depends on the quality of ground truth and the 

number of datasets. Ground truth is the label 

of data, in the process of labeling it quite 

difficult because of some color have same 

characteristic with another color, as for 

example color of landslide with bare soil and 

water-body. But, perform of SegNet is quite 

good, faster, and efficiency. Quite good 

because from original dataset perform a good 

result (Badrinarayanan et al., 2017), faster and 

efficient because in this research using PC not 

high hardware configuration. 

 

 
 

 

Figure 9. 

Quality assessment of SegNet. 

Real 

Situation 

   

Ground 

truth 

(Labeling 

the real 

situation) 

   

SAR data 

(Color 

composite) 

   

Estimation 

(Results) 

   

 (a) (b) (c) 
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Table 3. IoU from Ground truth and 

Estimations 

Estimations (Results) IoU 

(a) 0.1483 

(b) 0.0515 

(c) 0.1388 

4. CONCLUSION AND 

SUGGESTIONS 

In this research, the performance of the 

SegNet shows, that it is fast and efficient in 

memory usage. However, the end-result is not 

good, this is because of quality of training set 

as well as smaller dataset. Overfitting is also a 

problem which may occurs when the training 

data is limited and less varied. 

There are certain ways to the chances of 

overfitting. Some of them are- having a larger 

database, using dropout layer in the network 

architecture, use of ‘early-stopping’ function 

etc. The quality of dataset also needs to be 

taken care of as it directly influences the 

result. For this we can take help of experts 

and may be random site survey of some 

places. For further improvement, transfer 

learning can be considered to utilize the 

already trained model on the landslide 

problem, that will help to reduce the time of 

training. 
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