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ABSTRACT

In this paper we study the existence and approximation of the periodic solution of nonlinear integro-
differential equation with nonlinear boundary condition by assuming the function f(t,x,y) is a
measurable at t and bounded by Lebesgue integrable function which has the weaker conditions. The
numerical —analytic method has been used to study the periodic solutions of ordinary differential
equations which were introduced by Samoilenko.
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1. INTRODUCTION

A boundary value problem consists of a The so-called numerical-analytic method for
integro- differential equation on a given interval investigating a periodic solution, is widely used
and an explicit condition that the solution must for studying solvability of non-linear boundary
satisfy at one or several points. The simplest value problems and constructing approximate
instance of such explicit conditions is when they solutions for finding harmonic oscillations
are all specified at one initial point. The solution arising in various systems described by integro
of differential equations may be generally —differential  equations, and differential
specified at more than one point. Often there are equations with boundary conditions.
two points, which correspond physically to the Samoilenko (1976) has used the numerical-
boundaries of some region, so that it is a two— analytic methods of periodic solutions for
point boundary value problem (Putertnka,1991; ordinary differential equation which has the
Ronto, 2000). form

The theory of integro-differential equations % = f(t,x)

has been of great interest for many years. It plays
an important role in different subjects, such as
physics, biology, chemistry, etc, and the study of
periodic solutions for non-linear system of
differential equations with boundary conditions
and boundary integral conditions is a very

where x € D,

D is closed and bounded subset of R,

the vector function f(t,x) is defined on the
domain:

(t,x) ER' X D = (—0o0,00) X D,

important branch in the differential equation which is continuous in t and x and periodic in
theory (Robert, 1984; Mitropolsky,1979: Sahla t of period T.
2021).

Many results about the existence and Lemma 1 (Samoilenko 1976). Let f(t) be a

approximation of periodic solutions for system
of non-linear differential equations have been
obtained by the numerical analytic methods
that were proposed by Samoilenko (1976)
which had been later applied in many studies
(Butris, 1994; Perestyuk, 1974; Shslapk, 1980).

vector function which is defined in the interval
0 <t<T,then:

t T
J;(f(s) — %L f(s)ds)ds

_ - _t
where M = tgﬁ&)ﬁlf(t)l and a(t) = 2t(1 7

< a(tH)M,

In this work, we investigate the existence and
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approximation of periodic solutions for non-
linear system of integro-differential equation
with nonlinear boundary condition which has
the form:

dx b(t)

T=ton] alx@)ds) M

dt a(t)

(x(0),x(T)) =c, c€R = (—0,0) (2)
where ( . , . ) is a scalar product of vectors

x(0) and x(T),xq ,f —are points of the n-
dimensional Euclidean space R™ .

Assume that the functions f(t,x,y) =
h@&xy), Exy), . 6, x,y)) and
9, x) = (g1(t,x), g2(t, %) , .., gn(t,x)) are
define and continuous in the domain

(t,x,y) ER' XD X D; = (=00 ,0) X D X

D, 3)

and periodic in t of period T, where D is a
closed bounded domain in R™ and D; is
bounded on the same domain, R™is Euclidean
spaces .

Furthermore, the vector functions f(t,x,y) and
g(t, x) are satisfy the following inequalities.
It x, I < IMO], gt )1 < INOIl (4)
I£(t, x1,y1) — (&, %2, y2)Il <

1K1 (O IHIx =%l + K2 lly: — y2ll
llg(t, x1) — gt x) Il < [ILOHIx; — %2l
forallt € R',x,x.,x, €EDandy,y;,y, E
D;where M(t), N(t), K, (t), K, (t), L(t) are
Lebesgue integrable functions,

Also H = |[b(t) — a(t)|| are positive constant,

|| = max /.
te[0.T]

(5)

Definitionl. A function f is defined on a
set E € R is said to be continuous a point x in E
if e > 0 is given , there is a positive number & ,
such that for all y in E with ||x — y|| < 8 we have

IfG) — Il <€ .

Definition2. let f be a continuous function
define on the domain: G={(tx):ast<
b,c < x < d} then fis said to satisfy a Lipchitz
condition in the variable x on G ,provided that a
constant if for all K > 0 exists with the property
that

I£Ct, xq) — £t x2) || < K Ix; — Xl

For all (t,x;),(t,x,) €G the constant Kis
called a Lipschitz constant for f .
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Beside (1), we can also consider the
following system:

b(t)
% =f <t, X, L(t) g(s,x(s))ds)) —A (6)

with nonlinear condition (2) , where A =

(A ,4,, ... ,A,) is a parameter.

Definition3. The value of the parameter A at
which the solution of the system (6) taking for
t = 0 the value x = x, is periodic in t of period
T and such a A is a unique will be called a A —
constant at the point (t,x,) with respect to the
system (6) .

Definition4 . A linear space E with a norm
defined on it is called a normed space.

Definition5 . let (E, || .||) be a norm space, If
T map into itself we say that T is a contraction
mapping on E if there exists 9 € Rwith 0 < d <
1 such that

ITx(t) — Ty ()l < allx(t) — y(t)Il,
x(t),y(t)€E.

Definition6 .A solution x(t) is said to be stable
if for each

€>0 , there exist a § >0 such that any
solution X(t) which satisfies || X(ty) —
x(tp) || < & for some ty, also satisfies || X(t) —
x(t) || <€ forallt > tg.

Definition?7. Let f be a function on a set E € R?
. We say that f is Lebesgue measurable on E if
for every x€ R?, the set {t;t € E,f(t) >} is
measurable.

Definition 8. Let f be Lebesgue measurable
function defined on E € R? .Let

L(E) be the set of all measurable functions
defined on E such that

Jo If®lldx < oo . The set L(E) is called

Lebesgue integrable functions.

Theorem 1. (Banach fixed point theorem) let
E be a Banach space , if T is a contraction
mapping on E then T has one and only one fixed
(For the definitions

point in E. see Rama

(1984)).
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We consider a sequence of a vector functions
defined by the recurrence relation.

Xm+1(tX) = Xo +

J t[f(s X (5, %X0), [y 8(T,Xm (T, %0))d0)) -

T(xo,e) fO ( X0

b(t)

<f (s, xm(s,%0), | g(txm(r, Xo))dr> )ds]ds

te

T T, 0)
with ,

a(t)

[c — (Xq,X0)] (7
te

T(x—o,e) [c — (x0,X0)] ,

Xo(t, o) = Xo +

m=0,1,2,
at Xo € D¢ ,(Xp,€) #0 ,
(1,1,
Let ym(t,%0) = [y10) 8(5 Xm(s))ds
m=0,1,2, (8)
he non-empty sets are defined as follows:
T
Dy =D —Z|M(D)|
T
Dig =Dy =< IM®OII IL@OIIH 9)

Furthermore , we suppose that the greatest

e =
,1) unit vector .

eigenvaluel,, ,xof the matrix ,

A=K I+ IKONILOIH) |
does not exceed unity , i.e
Amax(A) <1 . (10)

By using the Lemma 3.1 (Samoilenko,
1976) , we can state and prove the following
Lemma
Lemma 1. let f(t,x,) be a vector function
which is defined in the interval 0 <t < T,
then:

|ft (s x(s,Xg), fab(g)g(r x(t, XO))dT)> -

ISSN: 2303-1751

f 2iz1 Xoi fi(s,%q,y0)ds]ds

TZ{‘ 1 Xoi
t
- f [£(s, %0, 7o)
0
n
¢ ff( )ds]ds
X S, Xg, s
TZI ) 01 0i 0:Yo

S INC XO.yO) —;fo f(s, X0, yo)dslds| <
J316Cs, %0, y0) 1ds — = [T 1£(s, x0,y0)Ids +

= Ji 1fGs, %0, o)l ds

< (1 -1 ) tft xo,y0)] + 5 (T —

DIt x0,y0) < (1 =3 ) MOl +5 (T -
OIMOI < 2t(1-1 ) MO

| ol (sxC.x0), [y 8T %t x0))d)) -

T(%{)e)f(;r (X0 ,f(s,x(s, Xo), fab(g) g(tx(t, Xo))dT))>
dslds | < [IM(®[la(t)

2. APPROXIMATION OF A PERIODIC
SOLUTION OF (1), (2).

The investigation of periodic approximation
solution of the system (1), (2) is formulated by
the following theorem:

Theorem 2. if the system (1), (2) satisfies the
inequalities (4), (5) and(6) with assumptions
(9),(10), has periodic solution x = x(t,%q)
passing through the point (0,%,) , Xg € D¢, then
the sequence of functions is:

Xm (6, Xo) = Xo +

fJ[f(s Xin-1(5, %), [0 (T, X1 (1, %))dD) ) -

T(Xo e)f { Xo,

T(xo e)f (%o, f (S x(s,%o), fa(t) g(vx(m XODdT))) df](i m- 1(5 Xo), fa(t) g(T»Xm—1(T,X0))dT)) )

< IM®) [la(t)

where [|[M(D)]|| = thgl,)T(] |f(t, x0)| and

() = 2t(1 — 1)

let (xq,€) = XL, Xoi
n

(0,5, %0)) = D %0155, %0)

i=1

S TG, %0, ¥0) —

and

40

ds]ds +

[c — (X0, %0}]
te
Toroe) 1€
(X0,X0)] m=1,2,
is periodic in t of period , and uniformly

T( . (11)

with x(t,Xg) = xo +

convergent m — oo in the domain:
(t,x9) € R' X Dy = (—00,0) X Df (12)

to the limit function x°(t,xy) defined in the
domain (3) which is periodic in t of period T and
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satisfying the system of integral equations:
x(t, Xg) = xo +
f;[f(s,x(s, Xo), fab(g)g(r, x(T, XO))dT)) -
T(xeo,e) fOT( X0,

f(s,x(s, Xo), fatzg)g(t, x(T, xo))dr)) Yds]ds
+ g € (0. %o)] (13)

and it is a unique solution of the system
(1.1), (1,2) provided that :

[1x° (t, x0) = Xoll < IM(O|| a(t) (14)
and

[1x°(t, %) — xm (&, X0l

< AM(E - AD)THIMO| alt) (15)

forallm > 1 and t € R, where E is the identity
matrix and

t
a(t) = 2t(1 - T) .
Proof. Consider the sequence of functions
X1 (t,X0) , X2 (t%0) , o LXm(tX0) 5o
defined by the recurrence relation (7) Each of
these functions of sequence is defined and
continuous in the domain (3) and periodic in t
of period T .
Now, by the Lemma (1.2.2) , and using (1.12)
,whenm =1 , we get:

Iy (t%0) = xol = [|x0 +

fot [f(s, Xo (S, Xo), fab(g) g(t.xo(t, XO))dT)) -

T b(t)
T(XLO,E)J.O (XO lf(SPXO(S' XO), fa(t) g(T' XO(T' XO))dT))

te te
NX—W[C —(X0,Xg)] — X0 — T(X—Ole)[C -
(XO:X0>]||

” fot[f (S' X0 (S, Xo), fab(g) g(t,x0(, XO))dT)) —
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[ o€ 2 (2)ds = fy 9. xo)ts|
ly1 (t, x0) — yo (&, xo)Il < NIL(E) N l2xq (2, x0) —
xo (&, x0) IIH (17)
For all xo € Dy and (¢, xo) =

f;((tt))g(s,x(s))ds € Dy .

ieyi(t,xo) € Dy ,when x4 € D¢
Thus by induction ,we have :
lIxm (t, x0) — X0 (&, X0) |l < MO a(t)

<2 MO (18)

forallt € R, xo € Dy i.e

xm(t,xo) € D Forallt € R*, xy € Dy .

Now , from (18) ,we get :

lym (tx0) — yo (& x0)Il <

ILEONHIIxm (6 x0) — %o (8, o) (19)
Ym(t,Xo) € D;Forall t € R, x, € D¢

We claim that the sequence of functions (7) is
uniformly convergent on the domain (12) .
by the Lemma 2.1, and putting m = 2 in (7) ,
we have

lIx2 (£, %0) — x4 (t, xp)l

< [fo [(Ra )% (5, %0) = %05, %0) | +
K2()ly1(s,x0) = yo (s, %)l =

 Jy Ka(9)lxy(5,%0) = xo (s, %0) Il +

K(9)lly1 (s, %) = Yo (s,%o)llds] ds]

s@[(l — 2 ) t(lIK, )1l +

Y AKADHILOH) %1 (5, %0) — Xo (s, o)l +

S (T =K, ®ll +

11K 2 O NILE Nl (5,%0) = %0 (s, o)
<[(e(1-%)+1-0)AK @I+
11K ONILEOIR)IIx, (5, x0) = %0 (s, %0) ]

T Iy o £ (.00, X0), [y 8T %0 (1, %0))d0) ) s (OI + 1K O NILOID 1 G, %0)

< a@® MOl
and hence,

1 (& %0) = xoll = 3 IM®I, (a(® <
T

2) (16)

iex;(txy) €D, forallt € R, x4 € D¢
Also from (16) , we have:
ly1 (¢, x0) = yo (& x0)l =

— %o (s, %)l
lIx2 (6, x0) — x4 (& x| < (IK; O +
IK 2 OILONH) a(®)1%1 (s, X0) — X0 (5, %)l
lIx2 (t, x0) — X1 (&, X < Allx1(t,%0) —
Xo (6, xp) I
lIx2 (£, x0) — %1 (t, x) |l < AIM®Ila(t)  (20)
Suppose that the following inequality is true :
lIXm (t, X0) — Xm—1(t,x) | <
A™HIM(®) [[at) (21)
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We shall prove the following inequality
Xm+1 (6 X0) = Xm (6 x0) |l <

AT IM® lla(t) (22)

By using the inequalities (20) and (21), we get
1Xm+1(t X0) — Xm (& x|l < (K, (O +
K ONILOD [(1 -5 ) lxm (s %0) =
T
Xm-1(5,%0)ll ds + 7 J; Ixm (s, %0) —

Xm-1 (5, o)l ds]

So that:

Xm+1 (6 X0) — X (6 x0) || < AT[M(D) [l (D)
Alsoistrue Xy € Dfandm > 1

From (21) and (22) , the following inequality:
IXm+k (6 X0) = Xm (6 Xo) || < X4 (6 X0) —
Xm+k—1 (6 Xl + 1Xm4k—1(t X0) —
Xmak—2 (G X)I+ o FXmar (6X0) —
Xm (6, Xo) ||

< APy (6 %0) — Xo (6 %)l +
A2 1%, (6, %) —

Xo(txo)l+ . . . +A™[x1 (£, X0) — X0 (£, x0) |
SAP[1+A+ A2+, . A2+
A%, (8, %0) — %o (6 x0)|

IXm 4k (6 X0) — Xm (£ X0 || <

TR AMHIx, (6,%0) — X0 (6 %)l <

YR AT MO a(t)

is hold for all k > 1 and x, € D¢

(23)

But the Egin values of the matrix A are
assumed to lie within the circle of a unit radius,
which implies that:

Z%:ol Am+H < AM Z{:ol Al = Am (E _ A)—l (24)
and

nlli_rpoo A =0 (25)

Relation (23) and (25) prove the uniform
convergence of the sequence of functions (7) in
the domain (12) asm — oo
1111i—rpoo Xm (t,%0) =x°(t,Xo)
Since the sequence of functions (7) is periodic
in t of period T, then the limiting function

(26)

x%(t, xo) is also periodic in t of period T.
Moreover, by the lemma 1 and the inequality
(23) ,the inequality (14) and (15) are satisfied
foralm>0.

Using relation (26) and proceeding in (7) to the
limit, when m — oo , this shows us that the

42
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limiting function x°(t,x,) is the periodic
solution of the integral equation (13) .

3. UNIQUENESS OF A PERIODIC
SOLUTION OF
(1), (2).

The study of periodic uniqueness solution of
the system (1),(2) is formulated by the
following theorem.

Theorem 3. A statement similar of all
inequalities and conditions of the theorem 2.
Then the system (1) with (2) is a unique periodic
solutions on the domain(3).

We show that x(t, X,) is a unique solution of (1)
, (2) . Assume that x*(t,X() is another solution
of (1), (2),1i.e

X"(t, %) =X +

fot[f (s,x*(s, Xo):fab(g) g(t.x"(t, xo))dr)) -

e

te
T(xq,€) [C - <X01X0>]

Now , we prove that x(t, xy) = x*(t, x,) for all
X € Dr and to do this , we need to prove the

(27)

following inequality :

lIx*(t,x0) = Xm (t.x0)|l < A™(E —
A)THIM* [la(t)

Where

IM*]| =

s (s ), 20|

Suppose that (1.29) is true for =k, i.e
[1x* (6, %0) — Xi (&%)l < AR(E —
A)THIM [l t)
Then,
* T
lIx*(t,X0) — Xk+1 (LX)l < [5 (K, Ol +
t *

K 2 ONILOI)] [(1 =5 ) Sl G, x0) -

T *
xe(5,%0) | ds + = f,lIx* (s,%0) —
xic(s, o) ds| < AV (E -
A)TTM a(t) (30)
By induction, inequality (28) is true for m =
0,12, ..
Thus from (26) and (28), we have :

(28)

(29)

Toa Iy o (5% (5,%0), [y (X" (1.%0))dT) ) ds]ds +
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1}112100”)(* (tl XO) —Xm (tl XO) ”

< (E

— A7 YIM*la(t) lim A™ (31D
m—oo

From the condition(10) in (31), we get:

lim [[x*(t, o) — X (t, x0)|| = 0

m-—oo

and hence ,

lim x,(t,x9) = x*(t,Xq) -

m—oo

By the inequality (23), we get
x(t, o) = x*(t, X)), i.e
x(t,X¢) is a unique solution of (1), (2) .

4. EXISTENCE OF A PERIODIC
SOLUTION (1)(2)

The problem of existence of periodic solution
of period T of the system (1) , (2) is uniquely
connected with the existence of zero of the
function A(0, x) which has the form:

A(t, xo) = T(xq,€) [(x0,%0) +
T b(t)

f ((XO' f(tr X(t, XO)I © g(T' X(T! XO))dT))
0 a(t

Ndt —c] (32)

where x°(t, X¢) is the limiting function of the
sequence of functions X, (t,X) .

Since this function is approximation determined
from the sequence of functions

T<X0» e)

3 (o, £t xm (6 %0), [ 8T %0m (5, %0))dD))
Ndt —c] (33)

Theorem4 . Let all assumptions and conditions

Ap(txo) = [(X0,%0) +

of theorem 1.1 are satisfied, then the following
inequality is satisfied :

140, %0) = Am (0, %)l < A™** (E -
ANTHIMOIN

forallm >0 ,xy € D¢ .

Proof: By the relations (32) and (33) we get
1400, %0) — Am (0, x0) |l < [([IK; (O] +

1K 2 ONILO NI [ lx(tx0)

Xm (t, Xo) || dt

So that

(34)
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1400, %0) — Am (0, %)l
< [(IK: @]l

1 (T T
+ ||K2(t)||||L(t)”H)]Tf IIM(t)IIEAm(E
0

—A)"1dt

< [g(llKl(t)Il + 1K @ NIIL®[H)MA™ (E -
At

But A = ;(”Kl(t)” + K2 OIIL®|H) , thus
the above inequality can be written as :

140, %0) — A (0, %)l < A™*1(E —
ANTHMOI e

The inequality (34) will be satisfied for all >
0.

Theorem 5.Let the system (1) , (2) be
defined on the interval [a, b].

Suppose that for > 0, the function A, (0, x,)
defined according to formula

(33) satisfies the inequalities:

(35)

: < — m+1 _
sty A (O %0) < ~ATTCE
A IMOI

> m+1 _
athereo—h Am(0,%0) = ATTH(E
A IMOI
Then the system (1), (2) has a periodic solutiefi x =
x(t,Xo) for whichxq € [a+h,b—h].
whereh =2 [M(D)
Proof. Let x; and x, be any two points in the
interval [a + h,b — h] such that
A (0,%1) = D | Am (0,

Am (0! XZ ) =
e A (00 o)

Taking into account inequalities (34) and (35)
we have , we have

A(0,%1) = Ay (0,x1) + [A(0, %) —

An(0,x)] <0

A(0,x3) = AR (0,x3) + [A(0,x;) —
An(0,x2)] =0 (37)
It follows from the inequalities (37) and the
continuity of the function A(0,X,),That there
exists an isolated singular point x°, x° €
[x1,X], such that A(0,x%) = 0. This means that
the system (1), (2) has a periodic solution x =
x(t,xo) for whichxy € [a+h,b —h]
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Remark 1 (Samoilenko 1976). Theorem 5 is
proved when X, is a scalar singular point which
should be isolated.

Theorem 6.. If the function A(0, X)) is

defined by A: D¢ — R", and

1 T
A(O,XO) = T(X—OQJ;) ((XO,

f(t, x(t, XO),fab(g) g(t,x(1,%0))d1))

Ndt] (38)
where x°(t, Xo) is a limit of the sequence
functions (1.12) . then the following
inequalities hold.

A0, x) Il < MOl (39)
and

1800, x3) — A0, x3)|| < ZACE — A)7||x§ -
x5, (40)

Forall x, , x§,x§ € Dy and E is identity
matrix.

Proof. From the properties of the function
x%(t,%o) as in theorem 2 , the function A(0, x,)
is continuous and bounded by M in the domain
R' X D.

By using ( 39) ,we have

14€0,x5) — A0, x3)

17 1 1
< T—[o ”f(t,x(t, XO),y(t,xo))
— £(6x(tx3), y(6.x3) ) | at

1 T
< [y + KoL) [ eCe x) = 5 x) e
0

< LUK O + 1K O IHILOI1H) 1||x(t x5)
—x(t,x3)|
And hence,

180, x3) — A, x3)]| < 2[5 ey +
K, LH)| [[x(t, x8) — x(t, x3))|
1800, %5) — A0, x3)|| < 2 Al|x(t,xd) -

x(t, x3)|| (41)
Where x°(t, x3), X0 (t, x2) are the solution of
the integral equation:

x(t, xlg) = xg +

fot[f (s, x(s,x§), fab(g) g (1’, x(T, x‘g)) dT)) -
e o {on(s0) £ 1339 0)

(42)

yds]ds + T(;—:e) [c — (X0, Xo)]

44

ISSN: 2303-1751

with

x8(t,%0) = x§ , where k = 1,2.
From (42) , we get

||x(t x3) — x(t, x2)||

< [Ix6 = x§[ + LK, O

+ IK 2L IH) a®)||x° (s, x5)

—x%s,x3)||
Ix(tx3) — x(t.xD)|| < ||x§ —x3|| +
[(CAGIE:

T
K 2O NIL@IH) 5] [x°6s,x8) = x0(s,x3)]|
|x(tx3) — x(t.xD)|| < ||x§ —x3|| +
Al[x°(s, xg) — x(s, x3)|
(& — M) — xCt D] < 15 — 3]
So that,
||X(t, x3) — x(t, X(Z,)” <(E- A)_1||X(1) -
x|
By using (43) in (41), we get (40) .
Remark 2. (Mitropolsky1979). Theorem 6
confirms the stability of the solution for the
system (1), (2) ,that is when a slight change
happens in the point X, ,then a slight change will
happen in the function A(0, xg) .

(43)

5. EXISTENCE AND UNIQUENESS
SOLUTION OF (1), (2)

In this section, we prove the existence
uniqueness theorem of the problem (1),(2)
using Banach fixed point theorem.

Theorem 7. (Banach Fixed Point Theorem).
Let the vector functions f(t,%,y) and g(t,x) in
the problem (1), (2) are defined and continuous
on the domain (3) and satisfies all conditions of
the theorem 2.1 , then the problem (1), (2) has

a unique continuous on the domain (3) .

Proof . Let (C[0, T*], ||.||) be Banach space and
T*be a mapping on C[0, T] as follows

T*x(t,Xq)

=X,

t b(t)
+fo [f(S’X(S’XO)‘L ) g(‘r,x(‘r,xo))dr)>

(t

T
e
_ e Of( Xo» f(s, x(s, Xg),

b(t)

g(t x(t, XO))dT)>
a(t)
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yds]

And
T*w(t,Xq)
=Xp

b(t)
f [f(s w(s,Xo), f g(r,w(‘t,xo))dr)>

T(Z,@ [c — (X0,%0)] (44)

T(xo, €) a(t)

Yds]ds + ——[c — (x0,%o)] (45)

te
T( 0!)

Since f(t, x,y) and g(t, x) are continuous in the
interval [0, T] and xg, y, are fixed points then

ING; (S x(s, Xo), fa(t) g(tx(t, XO))dr)) -
T(xo e')f (xo,f (S x(s, Xo), f(t) g(r x(t, xo))dr))

yds]ds + [c — (x0,%0)]

e
T(XO' e)
And

IN; (s w(s, Xo), f(t) g(t w(r, Xo))dT))
T(x_o,e)f0 (xo,f(s w(s, xq), f(t) g(r w(T, xo))dr))

t
Yds]ds + T (X:’ ) [c — (X0,%0)]

are continuous functions on C[0, T]
Therefore Tx(t, x,), Ty(t, xo) € C[O0, T]
Let x(t, Xq), y(t, x¢) € C[0, T] then
IT*x(t, x0) — T*w(t, xo) || < Allx(t, x0) —

w(t, xo)ll (46)
b(t)
Let q(t) =f g(t, w(t, x))dr
a(t)
ly(t, x0) — q (&, Xl = || Sy 9(5. x())ds -

:((t)) w(s, xo(s))ds ”

ly (¢, x0) — q(t, xo) Il < L(E)Ilx(t, x0) —
w(t, xo)IH (47)
Now , taking

IT°2x(t,20) = T'wi(t, %)l = max |xo +

N [f (5,x(s,x0), [y 9(xx(7, %0))dD) ) —

b(t)
J-( Xo» f<s, w(s, %), g(t w(r, xo))dr))

Periodic Solution of Nonlinear Integro-Differential Equation
With Nonlinear Boundary Condition

0¥] |f0t[f(S,X(S, xo):)’(s' xO)) -
f(SrW(S! xO)r CI(S'XO)) -
%fOTf(S,X(S, xO)ry(S'xO)) -
f(s,W(s,xo),q(s,xo))ds]ds |
< max [fy Ky (®)x(s,x0) = wls, xo)| +
K, (O)L(t)H|x(s,x9) — w(s, xg)|ds —
= Jy K (O)1x(s,20) — w(s, xp)] +
K, (O)L(t)H|x(s,x9) — w(s, xg)|ds +
%ftTKl(t)lx(s, x0) — w(s, xo)| +
K> (DL(OH]x(s,%0) = w(s, %) ds]

< max] [( (1——)+ (T—t)>(K1(t)+

te[o,T

K2 (DL H)Ix(5,%0) = w(s, x0)
< a® UK O + 1K OILEOIH) max It xo)
- W(tl XO)l

< —

< Atrer%(%]IX(t, Xo) — W(t, xo)|
Thus
IT*x(t, x0) — T*w(t, o)l

< Allx(t,x0) — w(t, xo)|

T* is a contraction mapping on C[0, T] from
theorem 2.1,we get
T*x(t, X¢) = x(t,x0) and T*w(t, xo) =
w(t, Xq) are fixed point

X t,x . . N
and hence ( ( 0)) is a unique continuous

w(t,Xo)
solution of (1), (2) .
CONCLUSION
The existence and approximation of the
periodic solution of nonlinear integro-

differential equation with nonlinear boundary
condition is using by assuming the function
f(t,x,y) andg(t,x,)are measurable in t and
bounded by Lebesgue integrable function which
have the weaker conditions. The numerical —
analytic method has been used to study the
periodic solutions of ordinary differential

- (x il f (x0,f (s x(s, xg), fa(t) g(z, x(z, xo))dr)))ds]ds + equations which were introduced by Samoilenko

T<x ) [c = (xpxp)] —2xp —

IN [f (s w(s, x,), fb((:))g(r w(T, xo))dr)) +

T(x e)

[c = (x0,%0)] |

T(x e)

45

(1976).

f (xo,f (s w(s, xo), fb((t))g(‘f,W(T,xo))d‘[)))ds]ds—
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